تامین ایمنی سازهها در برابر بلایای طبیعی و بویژه زلزله سالهاست كه مورد توجه مهندسان سازه و زلزله قرار دارد. زلزله بصورت مستقیم بر المانهای سازهای و بصورت غیر مستقیم بر المانهای غیر سازهای تاثیر گذار میباشد. مطابق با مطالعات صورت گرفته بر سازههای تحت تاثیر شتاب زلزله، بیش از 60 درصد خسارات ناشی از زلزله بر اثر تخریب و انهدام المانهای غیر سازهای میباشد. تجربه نشان داده است كه حتی در سازه هایی كه ضوابط لحاظ شده برای طراحی و ساخت سخت گیرانهتر از سطح آیین نامهها بوده است. المانهای غیر سازهای نتوانسته اند آثار نیروهای وارد شده بر جرم سازه را تحمل كنند. این امر برای حفظ سازه هایی كه ملزم به حفظ سطح عملكرد خدمت رسانی بیوقفه میباشند از اهمیت بالایی برخوردار میباشد؛ زیرا در چنین سازه هایی بعضاً ارزش وسائل و تجهیزات و یا دكوراسیون و نمای سازه به مراتب بیش از ارزش ریالی سازه میباشد. بنابراین اتكاء به سیستمهای باربر جانبی سنتی همچون دیوارهای برشی و بادبندها نمی تواند به تنهایی جوابگویی انتظارات در سطح بهره برداری بیوقفه باشد. از این رو مهندسی زلزله نیازمند سیستمی است تا بتواند بر عواملی كه موجب خسارات سازهای و غیر سازهای می شود غلبه و سطح عملكردی مورد نظر را تامین نماید. جداسازهای لرزهای نسل جدیدی از سیستمهای مقاوم در برابر زلزله میباشند كه تجارب بدست آمده از زلزله نشان داده است، عملكرد بسیار مناسبی در كاهش و حتی حذف خسارات جدی به سازه از خود نشان دادهاند ]1[.
سامانه جداساز بر پایه افزایش تغییر مكان سازه و در نتیجه افزایش پریود سازه پایه گذاری شده است. در این سیستم ایجاد تغییر مكانهایی در حد چند ده سانتیمتر موجب كاهش شتاب وارد به ساختمان تا بیش از نصف شتاب زمین می شود. شتاب پارامتری است كه میتوان به عنوان اولین و مهمترین پارامتر موثر در خسارات وارده به سازه از آن یاد كرد. میزان شتاب وارده به سازه بسته به فاصله كانون زلزله تا سازه مورد نظر متغیرمیباشد. چنانچه مطابق با مراجع معتبر ایجاد شتاب در مناطق حوزه نزدیک از گسل موجب امواجی پیچیدهتر از یک زلزله معمولی می شود. در این مناطق امواج ناشی از زلزله بسیار به امواج ناشی از انفجار شبیه میباشند. اهمیت این مطلب در آن حد است كه آیین نامه UBC برای مناطق حوزه نزدیک ضریب تشدید كننده 5/1 را در نظر گرفته است. لذا آیین نامههای اخیر بویژه برای سازههای با اهمیت و مستقر در مناطق حوزه نزدیک استفاده از سامانههای جداساز لرزهای را اكیداً پیشنهاد مینمایند]2[.
همانطور كه میدانیم در محاسبه سازههای سنتی، میزان میرایی سازه برابر 5 درصد در نظر گرفته می شود. میرایی پارامتری است كه بویژه در لحظههای نخست زلزله از اهمیت ویژهای برخورد است. در سامانههای جداساز استفاده از موادی همچون لاستیک طبیعی با میرایی بالا و همچنین هسته سربی باعث شده تا بتوان میزان میرایی مورد انتظار از این سیستم تا بیش از 20 درصد افزایش یابد. استفاده از سرب در جداسازهای لرزهای باعث می شود تا در لحظات نخست زلزله نیروی قابل توجهی میرا شود. استفاده از سرب در حقیقت باعث افزایش سختی
اولیه و در نتیجه افزایش سطح زیر نمودار هیسترزیس و متعاقباً افزایش انرژی میرا شده می شود.
از دیگر پارامترهای موثر در زمان زلزله شكلپذیری اعضاء میباشد. در سازههای سنتی شكلپذیری بیشتر از المانهای مقاوم جانبی همچون دیوارهای برشی و بادبندها و یا در سازههای قاب خمشی از تیرها انتظار میرود. شكل پذیری با رفتارهای پلاستیسیته از سوی المانهای شكل پذیر همراه خواهد بود. این امر اگرچه در صورت صحت عملكرد تا پایان زمان زلزله، موجب اتلاف و كاهش انرژی می شود؛ ولی علاوه بر آنكه می تواند مستقیماً بر المانهای غیر سازهای خسارات جدی وارد كند، مستلزم تعویض و یا ترمیم پس از اتمام زمان زلزله میباشد. انجام چنین عملیاتی بویژه در مناطقی كه دارای پس لرزههای با بزرگای بالا میباشند تقریباً غیر عملی به نظر میرسد. در سازههای مجهز به جداساز لرزهای شكل پذیری تنها به عهده سامانه جداساز گذاشته می شود و سایر المانها الزامی به تغییر شكلهای بزرگ و وارد شدن به ناحیه پلاستیسیته نخواهند داشت.
1-2 بیان مشکل و هدف از پژوهش
اگرچه استفاده از جداسازهای لرزهای هم اكنون بیشتر برای كاربردهای ساختمانی شناخته شده است، اما این سیستم علاوه بر صنعت ساختمان سازی برای صنایعی همچون پلها و نیروگاه ها نیز كاربردهای فراوانی دارد. لذا با در نظر گرفتن دامنه وسیع كاربرد این سیستم توجه به وجه دیگر این گونه المانها كه همان تكنولوژی تولید، ساخت و اجرای آنهاست، نیز دارای اهمیت میباشد. طی مطالعات و تحقیقات صورت گرفته، در حال حاضر تنها سه كشور در دنیا (نیوزیلند، ایالات متحده آمریكا و ژاپن) دارای كارخانه های مجهز تولید، ساخت و تست جداسازها بخصوص جداسازهای با هسته سربی میباشند. سایركشورها نیز همچون ایتالیا، ارمنستان و امارات دارای كارخانههایی با امكانات بسیار محدود تر میباشند.
نكته قابل توجه در استفاده از این سیستم آنكه، مطابق با آیین نامه های معتبر مربوط به این سیستم، آزمایش و تست این محصولات قبل از اجرا از موارد اساسی این سیستم می باشد و بدون شك لزوم همین پارامتر یكی از مهمترین محاسن این سیستم به شمار میرود. در كشور ما، بخصوص در سالهای اخیر بدلیل تحریمهای اعمال شده، و همچنین جایگاه ویژه جداسازهای لرزهای در تاسیسات هستهای، وارد كردن تجهیزات مورد نیاز جهت ساخت جداسازها و بخصوص جكهای مناسب تست آنها از مشكلات عدیدهای برخوردار میباشد. از سوی دیگر هزینه واردات این محصولات در حدی است كه غالباً كارفرمایان خصوصی یا دولتی فعال در عرصه ساخت و ساز پس از اطلاع از آن در استفاده از این تكنولوژی دچار شك و تردید بسیار میشوند. لذا هدف از این پژوهش آنست تا با آگاهی از نحوه عملكرد این سیستمها حین بارگذاری، نسل جدیدی از آنها كه قابلیت تولید و بهره برداری داشته و از لحاظ قیمت تمام شده به مراتب مناسبتر از نمونه های مشابه باشد را با رویكرد بومی سازی معرفی و نحوه عملكرد آن بررسی شود ]3[.
1-3 روش بررسی و مطالعه
اصول پایهای جداسازهای لرزهای بر اصول مقاومت مصالح پایه گذاری شده است. برای آنكه بتوان دید مناسبی نسبت به عملكرد این سیستمها داشت، ابتدا با روابط و تئوریات حاكم بر این سیستمها آشنا گردید.
روند طراحی سیستمهای جداساز لرزهای بطور کلی با پارامترهایی که از محاسبات قبلی بدست آمده و یا اطلاعاتی که توسط تولید کننده بدست آمده است شروع می شود. در این روند مواردی همچون بیشینه تغییر مکان افقی و پارامترهایی مانند: سختی قائم و افقی، کرنش برشی و پایداری جداسازها مورد بررسی قرار می گیرد. پس از اتمام طراحی اولیه نمونه هایی از جداسازهای طراحی شده بایستی انتخاب و تست گردد. بسته به نتایج تست ها طراحی اولیه ممکن است دستخوش تغییراتی گردد. به منظور کاهش تعداد سعی و خطاها لازم است تا اطلاعات دقیقی در فاز طراحی اولیه در دست باشد. بدین لحاظ در بررسی انجام شده، در فصل دوم ابتدا اصول پایهای و تئوریات جداسازهای لرزهای مورد توجه قرار گرفته است. این امر باعث می شود تا با آگاهی از این اصول كه منطبق با اصول مقاومت مصالح میباشد بتوان دید مناسبی از عملكردهای مورد انتظار و همچنین كنترلهای لازم بدست آورد. پس از آن در فصول چهارم و پنجم نتایج حاصل از تست یک نمونه واقعی از جداسازهای لرزهای بررسی و توسط نرم افزار ABAQUS آنالیز و تحلیل و نتایج با تستهای آزمایشگاهی مقایسه گردید. پس از حصول اطمینان از نتایج بدست آمده، مدلهای دیگری با تنوع در نحوه مدلسازی، نحوه مقید كردن المانها و همچنین نحوه آنالیز و تحلیل ساخته شد. با بررسی نتایج حاصل از هریک مدل دیگری تحت عنوان مدل تكمیلی ارائه گردید. در این مدل سعی شد تا موارد نقص سایر گزینه ها حذف و عملكرد مورد انتظار كسب شود. در این حین از نرم افزار اجزاء محدود ABAQUS بعنوان یک برنامه مدلسازی بسیار توانمند استفاده گردید. این نرم افزار قابلیت مدلسازی انواع مواد با خواص و رفتارهای گوناگون نظیر فلزات، لاستیک ها، پلیمرها، كامپوزیت ها، بتن تقویت شده، همچنین مواد موجود در زمین نظیر خاك و سنگ، قابلیت بالایی را ممكن می سازد. استفاده از این نرم افزار تنها محدود به تحلیل های مكانیک جامدات و سازه (تنش – تغییر مكان) نمی شود بلكه با بهره گرفتن از این نرم افزار می توان مسایل مختلفی نظیر انتقال حرارت، نفوذ جرم، تحلیل حرارتی اجزاء الكتریكی، اكوستیك، مكانیک خاك و حتی انفجار را مورد مطالعه قرار داد ]4 و 5[.
فرم در حال بارگذاری ...