:
با گسترش صنایع و کارخانجات، ناگزیر پساب های صنعتی نیز به شدت رو به افزایش است. آزادسازی این پساب ها در محیط زیست موجب اختلال در زندگی انسان و موجودات زنده می شود.
رنگ ها بخش مهمی از ضایعات صنایع می باشند که به شدت روی آب تاثیر گذاشته و به سختی قابل جداسازی است .
بسیاریاز صنایع، مثل صنایع کاغذ،نساجی، پلاستیک، از انواع رنگ ها استفاده می کنند. که در این میان کاربرد رنگ در صنایع نساجی چشمگیر است.
حضور مقدار کمیرنگ درپساب صنایع نساجی موجب کاهش شفافیت و ایجاد واکنش های شیمیایی در آب می شود. رنگ ها به صورت هیدرولیز شده در پساب ها وجود دارند که توسط فیلتر ها قابل جداسازی نیستند]12[.
در سال 1997 سازمانی در بریتانیا با عنوان ETAD[1] شکل گرفت که هدف آن تصویب قوانینی جهت ارائه شاخص هایی برای توسعه بهداشت آب و پساب های صنعتی بوده است.
این سازمان بالغ بر 4000 نوع رنگ را مورد مطالعه قرار داد و آلوده ترین رنگ را رنگ های بازی معرفی نمود. در سال 1997 سازمان محیط زیست بریتانیا اعلام کرد که درصد حضور رنگ در پساب های صنعتی باید صفر باشد، یعنی نباید هیچ رنگی در آب حضور داشته باشد و وارد محیط زیست شود.میزان مصرف آب در صنایع نساجی 250-25 متر مکعب به ازی هر تن محصول است]3و2[.
رنگ ها دارای ساختاری پیچیده اند که در صنایع نساجی به مقدار گسترده ای مورد استفاده قرار گرفته و سرانجام وارد محیط زیست می شوند]4[. رنگ ها از نظر شیمیایی و کاربرد به گروه های مختلفی تقسیم می شوند]5[.عمدتا به دلیل راندمان پایین رنگرزی و گاها بنا به
ماهیت رنگ ها ، حدود 50 درصد رنگ های راکتیو،20-8 درصد رنگ های دیسپرس[2]، و یک درصد از رنگ های پیگمنت[3] مستقیما وارد فاضلاب می شوند]6و7[.
رنگ های راکتیو آزو بزرگترین دسته از رنگ های مصنوعی محلول در آب بوده که دارای بیشترین تنوع می باشند.معمولا این رنگ ها نسبت به تجزیه بیولوژیکی مقاوم بوده و قابل حذف نمی باشند. دلیل آن شاید فقدان آنزیم های ضروری برای تجزیه رنگ ها در محیط زیست است ]9.[هیدرولیز رنگ زمانی اتفاق می افتد که مولکول رنگ به جای واکنش با گروه هایهیدروکسیل سلولز با آب واکنش می دهد]8[. رنگ های هیدرولیز شده قابل استفاده مجدد نمی باشند]7[.
از آنجا که بسیاری از رنگ ها از طریق تجزیه بیولوژیکی قابل حذف نمی باشند ، تحقیقات در زمینه حذف آن ها بسیار مورد توجه قرار گرفته است]6[.
مطالعات نشان داده که رنگ ها دارای خاصیت سرطان زایی به ویژه سرطان مثانه در انسان می باشند]10[.
در نتیجه رنگ های نساجی تهدیدی برای سلامت انسان و محیط زیست در سراسر جهان محسوب می شود و پساب ها باید قبل از ورود به طبیعت به نحو مطلوبی پالایش شوند]11و1[.
در شرایط متداول 50 – 20 درصد از رنگ های راکتیو مصرفی در فرایند نساجی هدر رفته و به دلیل تغییر ساختار شیمیایی در طی مرحله رنگرزی نمی توانند مورد استفاده مجدد قرار بگیرند.
تخلیه کنترل نشده این رنگ ها اثرات غیر قابل جبرانی را در بر دارد . رنگ های راکتیو در مقابل نور و عوامل شیمیایی مقاوم بوده و در محیط های طبیعی بسیار پایدار می باشند. لذا مدیریت فاضلاب های حاوی رنگ های راکتیو از دیدگاه زیست محیطی حائز اهمیت است. رنگ های راکتیو سولفوناته و بسیار محلول در آب بوده و جذب آنها بر روی توده های بیولوژیکی ضعیف است و تحت شرایط هوازی در سیستم های تصفیه متداول تجزیه نمی شوند]1[.
[1]Ecological and toxicological Association of Dyes
[2] Desperse dyes
[3] Pigment
سالیان متمادی هدف آیین نامهها و دستورالعملهای لرزه ای، معرفی سیستمهای سازه ای با قابلیت مقاومت در برابر زلزله بدون ویرانی و یا آسیبهای سازهای عمده بود. برای رسیدن به این هدف یکی از اصول اساسی دست یافتن به مصالح و سیستم سازه ای شکلپذیر میباشد. منظور از شکل پذیر بودن سازه، قابلیت تحمل تغییر شکلهای غیرخطی بزرگ، بدون هرگونه کاهش در مقاومت و یا ناپایداری و ویرانی میباشد؛ لذا انتظار میرود سیستمهای سازهای با شکلپذیری بالا قابلیت مقاومت در برابر تقاضایی بسیار بزرگتر از حد الاستیک خود را داشته باشند.
از اوایل سال 1960، به لحاظ تصوری که از رفتار مناسب و شکل پذیر سیستم قاب خمشی در برابر بارهای جانبی میشد، با اقبال عمومی خیره کننده ای روبرو گردید و در اغلب سازه های فولادی بکار برده میشد و بسیاری از مهندسان بر این باور بودند که آسیب سازهای عمده ای در هنگام زلزله متوجه قابهای خمشی فولادی نخواهد بود و در صورت بروز آسیب، این موضوع به خرابی در سطح اعضاء و اتصالات محدود خواهد ماند.
ضعف عمده قابهای خمشی فولادی در زلزله های سال 1994 نورثریچ[1] و 1995 کوبه[2] این تصور را به چالش کشید. بعد از زلزله مشاهده شد که تعدادی از ساختمانهای قاب خمشی فولادی متحمل شکست ترد در اتصالات به ویژه در ناحیه جوش شده بال پایین تیر به ستون شدهاند. دامنه خرابیها بسیار فراگیر بود تا آنجا که ساختمانهای 1 تا 26 طبقه، ساختمانهای با عمر ساخت کوتاه و حتی در حال ساخت را شامل میشد. نکته قابل توجه این بود که اکثر ساختمانهای آسیب دیده بر طبق ضوابط آیین نامههای معتبر قبل از این زلزله ها طراحی شده بودند و علاوه بر آن در مناطقی با سطح خطر زلزله متوسط قرار داشتند.
پیدایش این قبیل خرابیهای وسیع و شکستهای ترد غیر منتظره در اتصالات، منجر به تحقیقات و بررسیهای بسیاری به منظور بهبود عملکرد لرزهای قابهای خمشی فولادی گردید که از نتایج آن ها میتوان به معرفی اتصالات جدیدتر و مقاومتر در برابر بارهای لرزهای اشاره کرد.
اما معرفی اتصالات جدید، تنها رویکرد در پیش گرفته برای جلوگیری از تکرار چنین حوادث تلخی نبود چرا که آسیبهای سازهای مشاهده شده بعد از زلزله های نورثریچ و کوبه، ضعف روشهای طراحی و ارزیابی قابهای خمشی فولادی را هم آشکار نمود و بر ضرورت ارائه روشهای جدید در طراحی و ارزیابی ساختمانها با توجه به عملکرد مورد انتظار تاکید نمود. در این راستا فلسفه و مبنای آیین نامه ها مورد بازنگری و دگرگونی کلی قرار گرفت و منجر به پیدایش نسل جدیدی از دستورالعملهای طراحی بر اساس عملکرد گردید که در آن ها از روش طراحی بر اساس عملکرد[3] استفاده شده است، که هدف اصلی آن ها – و اغلب تنها هدفشان- این است که مانع فروریزش کلی سازه شوند، اصلاحات قابل توجهی داشتهاند، اما کاستیهایی نیز دارند: این دستورالعملها بر مبنای سطوح خطر و عملکردی مجزا میباشند و وضعیت کمّی عملکرد را برای خطر لرزهای پیوسته مشخص نمیکنند. علاوه بر آن تایید کفایت عملکرد در سطح اجزا صورت میگیرد نه در
سطح کل سیستم و در نتیجه یک تراز عملکردی خاص در صورتی که معیار پذیرش تنها در یک جزء واحد رد شود، ارضا نخواهد شد و در نهایت اینکه ارزیابی عملکرد در این دستورالعملها، تعیینی است (به استثنای تعیین طیف خطر یکنواخت) و امکان بررسی صریح عوامل عدم قطعیت (ذاتی و دانش) که باید در ارزیابی عملکرد بر مبنای قابلیت اطمینان بررسی شوند، وجود ندارد.
برای رفع کاستیهای فوقالذکر، در روشهای طراحی بر اساس عملکرد، تحقیقات با هدف توسعه مهندسی زلزله بر اساس عملکرد (PBEE)[4] در حال انجام است تا روشی جامع جهت جایگزینی نسل اول روشهای مهندسی زلزله که در بالا به آن ها اشاره شد، پیشنهاد شود. چشم انداز این روش توسط مؤسسه [5]PEER در قالب چارچوب زیر ترسیم شده است[8]:
*(کلیه پارامتر های معادله فوق در فصل 4 بخش 4 به طور کامل شرح داده خواهد شد)
اهداف نهایی در این چهار چوب تخمین احتمالاتی خسارت، هزینه ها و مدت زمان توقف کاربری میباشند. معادله بالا یک ساختار کلی برای هماهنگ سازی و ترکیب تحقیقات متنوع تحلیل خطر لرزه ای، مهندسی زلزله و تحلیل ریسک است و بدین وسیله، مسئله ابتدا به چهار جزء پایه ای تحلیل خطر، پیش بینی تقاضا، مدل سازی حالتهای آسیب و گسیختگی و تخمین خسارت از طریق معرفی سه متغیر میانی، [6]IM ،[7]EDP و [8]DM تفکیک میشود و سپس این اجزا مجدداً از طریق انتگرال گیری روی تمام سطوح متغیرهای میانی به هم مرتبط میشوند.
هدف این پایان نامه و یا تحقیقات مشابه یعنی ارزیابی عملکرد با بهره گرفتن از تحلیل احتمالاتی تقاضای لرزهای بر مبنای پارامتر IM، جزیی از چشم انداز جامع و کلی پیشنهادی برای ارزیابی اهداف عملکردی توسط PEER است که میتواند در چارچوب زیر تعریف شود:
*(کلیه پارامتر های معادله فوق در فصل 4 بخش 4 به طور کامل شرح داده خواهد شد)
آگاهی از میزان تقاضای لرزهای در یک سیستم سازه ای یکی از اجزای مهم ارزیابی عملکرد لرزهای است که به شدت تحت تأثیر عدم قطعیتها در حرکات زمین و پاسخ سازه است و تنها راه در نظر گرفتن این عدم قطعیتها مدل کردن دقیق آن ها با توجه به تئوریهای آمار و احتمالات است. در تحلیل احتمالاتی تقاضای لرزهای بر مبنای پارامتر IM، برای سادگی در برخورد با مسئله عدم قطعیتها، با بهره گرفتن از یک پارامتر واسطه IM، هر یک از عدم قطعیتهای موجود در حرکت زمین و پاسخ سازه به صورت جداگانه مدل میشود و یا به عبارت دیگر، با توجه به کفایت پارامتر واسطه فرض میشود که این عدم قطعیتها از هم مستقل باشند. بدین ترتیب مسئله به دو ریز مسئله مجزای تحلیل خطر لرزهای و تعیین توزیع تقاضای لرزهای به وسیله تحلیل غیر خطی سازه تبدیل میشود و سپس نتایج نهایی با هم ترکیب میشود .
برای محاسبه توزیع تقاضا و ظرفیت لرزه ای، یکی از جدیدترین روشها، روش تحلیل دینامیکی غیر خطی افزایشی (IDA)[9] میباشد که توانایی پوشش تقاضای لرزهای سازه ای از حالت الاستیک تا ناپایداری کلی را دارا است. در این روش از مفهوم دیرینه مقیاس کردن رکورد ها اما به صورت هدفمند استفاده شده و مدل سازه را تحت یک یا چند رکورد در سطوح متفاوت شدت حرکات زمین قرار میدهند.
از آنجا که یکی از اهداف ارزیابی بر اساس عملکرد، درک صحیح از رفتار غیرخطی سازه در سطوح عملکرد نزدیک به فروپاشی سازه میباشد، در این راستا ایجاد مدلهای هیسترزیس که بتواند تمام پدیده های تأثیر گذار روی تعیین تقاضای لرزهای تا فروپاشی سازه را در برگیرد، یکی از چالشهای ارزیابی بر اساس عملکرد به حساب میآید و مدلهایی که زوال سختی و مقاومت در بار سیکلی را لحاظ میکنند در مدل سازی رفتار غیرخطی سازه از اهمیت فوقالعاده ای برخوردار میباشند که از جدیدترین این مدلها میتوان به مدل اصلاح شدهی ایبارا- کراوینکلر (2008) [20] اشاره کرد.
نتایج تحلیل احتمالاتی تقاضای لرزهای بر مبنای پارامتر IM میتواند به دو صورت بیان شود که یکی از آن ها منحنیهای آسیب پذیری احتمال وقوع ظرفیت یا حالت حدی بوده و دیگری برآورد احتمال میانگین فراگذشت سالیانه حالت حدی میباشد که در میان انواع مختلف حالت حدی، فروپاشی کلی سازه از اهمیت بیشتری برخوردار میباشد و در تحقیقات بیشتری مورد بررسی قرار گرفته است. علاوه بر این نتایج، روش جامعی تحت عنوان رویکرد FEMA350 [5] در زمینه تحلیل احتمالاتی تقاضای لرزهای برای محاسبه سطوح اطمینان از عملکرد سازه های قاب خمشی فولادی ارائه شده که چارچوب مناسبی جهت برخورد با سه دسته عدم قطعیت کلیدی، یعنی عدم قطعیات موجود در حرکت زمین، پاسخ سازه و ظرفیت سازه را فراهم میکند و اثرات این عدم قطعیات را بر دو پارامتر بنیادی تقاضا و ظرفیت بیان میکند.
اغلب صدمات وارده به دندانهای دائمی Traumatic Dental Injuries (TDI) ناشی از زمین خوردن بوده و پس از آن تصادفات رانندگی، خشونت و ورزشها از علل اتیولوژیکTDI هستند(1, 2). پسران دو برابر دختران دچار TDI میشوند و احتمال صدمات بیش از یک بار در آنها بیشتر است. همچنین افراد با نیازهای خاص استعداد بیشتری برای TDI دارند(3, 4).
یکی از جدیترین صدمات دندانی، اوالژن(Avulsion) است که به جا به جایی کامل دندان به خارج از ساکت دندانی اطلاق میشود. در نتیجه ی این گونه صدمات، پالپ، الیاف پریودنتال و استخوان آلوئول به شدت تحت تاثیر قرار گرفته و رشتهای عصبی عروقی دندان و اتصالات پریودنتال قطع میشوند(5-7). الگوی صدمات وارده به دندان، بطور اولیه، به عواملی نظیر1) انرژی ضربه 2) جهت وارد آمدن ضربه و 3) قابلیت ارتجاعی ساختارهای پریودنتال حمایت کننده دندان بستگی دارد که در این میان قابلیت ارتجاعی بافتهای حمایت کننده، مهمترین عامل تعیین کننده در میزان گستردگی(شدت) آسیب، محسوب میشود. به طوریکه آسیب وارده به دندانهای شیری به دلیل قابلیت ارتجاعی بافتهای استخوانی اطراف دندانهای شیری، بطور معمول باعث جابجایی دندان شده و کمتر موجب شکستگی بافتهای سخت میگردد ولی در دندان های دائمی به دلیل خاصیت ارتجاعی کمتر بافتهای اطراف دندان ها، عکس این حالت اتفاق خواهد افتاد(7).
صدمات اوالژن 16-5/0% کل صدمات دندانی را شامل میشوند(8) و اغلب در سنین 9-7 سالگی و در دندانهای سانترال دائمیماگزیلا دیده میشوند، چرا که در این سنین دندان های سانترال در حال رویش بوده، ساختارهای احاطه کننده دندان انعطافپذیر هستند و لیگامانهای پریودنتال مقاومت بسیار کمیدر برابر نیروهای خارج کننده(extrusive) نشان میدهند(1, 4).
درگیری بیشتر سانترالهای ماگزیلا میتواند به دلیل موقعیت این دندانها در فک باشد چرا که نسبت به سایر دندانها کمتر محافظت میشوند(4, 8). وجود اورجت افزایش یافته انسیزورها، اپن بایت قدامیو عدم پوشش کامل لب ها و به هم نرسیدن آنها به عنوان فاکتورهای مستعد کننده گزارش شدهاند(5, 7). در کودکان با اورجت بیش از 3 میلی متر احتمال این رخداد بیشتر میشود. بین وضعیت اجتماعی اقتصادی با صدمات تروماتیک دندانی ارتباطی دیده نشده است(2). در غالب موارد، ترومای منجر به Avulsion، یک دندان را
درگیر میکند، اما در برخی مواقع Avulsionمیتواند به صورت درگیری دندان های متعدد اتفاق افتد(9).
از دست رفتن دندانهای قدامیدر کودکان و نوجوانان به دلیل ایجاد نقص قابل مشاهده، سبب طرد شدن آنها از گروه همسالان، محرومیت اجتماعی به دنبال آن و احساس شرمندگی و خجالت حین لبخند زدن در آن ها میشود و میتواند موجب پیامدهایی در ارتباط با کاهش عملکرد اجتماعی و کیفیت زندگی آنها گردد(9و8).
درمان ایده ال برای یک دندان Avulsed جایگذاری مجدد فوری با زمان خارج آلوئولی کمتر از 5 دقیقه است. اما متاسفانه اکثر دندانهای Avulsed با تاخیری در حدود 1 ساعت replant میشوند و این زمان طولانی خارج آلوئولی باعث از دست رفتن سلولهای PDL و به دنبال آن شکست در جایگذاری میشود. مطالعات کلینیکی کنونی نشان میدهندکه شکست درمان replantation در طی 5 سال اول پس از جایگذاری تقریباً 30 تا 40 درصد است.
جایگذاری فوری با توجه به عوامل مرتبط با حادثه از جمله حضور صدمات وسیع همراه و تهدیدکننده حیات، وضعیت هیجانی بیمار در لحظه آسیب و یا عدم آگاهی و اعتماد به نفس مردم و حتی متخصصین در مورد شیوه های جایگذاری، به ندرت اتفاق میافتد(10). قربانیان صدمات فک و صورت شامل اوالژن دندانی، معمولاً کمکهای اولیه را از افرادی غیر از پرسنل آموزش دیده دندانپزشکی دریافت مینمایند. بنابراین در اکثر مواقع، عوامل مهم برای موفقیت replantationنمیتوانند کنترل شوند. مطالعات نشان دادهاند که این سناریو را میتوان بطور قابل توجهی با آموزش در مورد ترومای دنتوآلوئولار و محیط نگهداری(مدیوم) به افراد عادی و افرادی بجز متخصصین سلامت دهان، خصوصاً کسانیکه در خدمات اورژانس مشغول به کار هستند برای دستیابی به درمانی موفق، بهبود بخشید. Replantation فوری دندان منجر به ترمیم بهتر PDL شده و بطور قابل توجهی وقوع تحلیل ریشه را کاهش میدهد. بنابراین به حداقل رسانیدن زمان سپری شده بین تروما و جایگذاری دندان و نگهداری دندان Avulsed در محیط های حد واسط مناسب ممکن است اثرات زیانبار دوره خارج آلوئولی روی سطح ریشه و ری واسکولاریزاسیون پالپی را کاهش داده و منجر به افزایش قابل توجهی در پروگنوز شود(11).
بطور معمول جایگذاری دندان طی 1 تا 4 ساعت پس از اوالژن رخ میدهد و بدنبال آن دژنراسیون سلولهای PDL یک رویداد شایع است و حضور بقایای PDL نکروز در سطح ریشه باعث تحریک وقوع تحلیل التهابی ریشه که دلیل اصلی از دست دادن دندان Avulsed است خواهد شد(11).
برای داشتن یک پروگنوز خوب، طرح درمان مناسب بدنبال آسیب، دارای اهمیت زیادی میباشد. جایگذاری دندان Avulsed اگرچه در بسیاری از مواقع نمیتوان بصورت فوری انجام پذیرد اما درمان انتخابی برای این نوع آسیب است. البته شرایط خاصی نیز وجود دارند که در آن موقعیت replant کردن دندان اندیکاسیونی ندارد. بطور مثال دندانهائی با پوسیدگی شدید یا بیماری پریودنتال، وضعیتهای خاص پزشکی از قبیل نقص سیستم ایمنی، بیماری شدید قلبی، اختلالات صرع کنترل نشده، ناتوانی شدید ذهنی، دیابت کنترل نشده شدید و فقدان یکپارچگی آلوئولار و یا عدم همکاری بیمار کنترااندیکاسیون replant دندان محسوب میشوند(12).
به هرحال استفاده از گایدلاینها میتواند برای ادامه یافتن بهترین مراقبت درمانی و رسیدن به حداکثر نتایج مطلوب مورد استفاده قرار گیرد. انجمن دندانپزشکان کودکان آمریکا با مرور مقالات دندانپزشکی خط مشی (Guideline)ارائه نمود که آخرین ویرایش آن در سال 2011 انتشار یافته است(12).
براساس این خط مشی پس از بررسی تاریخچه پزشکی و بررسی و رد نمودن کردن هرگونه آسیب نورولوژیک و غیر دندانی، تستهای تشخیصی زیر باید انجام شوند.
یکی از مصیبت بار ترین و غم انگیز ترین حوادث طبیعی که سالانه تعداد زیادی از انسان ها را در نقاط مختلف جهان به کام مرگ می کشد زلزله است. به طوری که در سال های اخیر بیشتر این خسارات مالی و جانی متعلق به کشورهای ایران، ترکیه، چین بوده است.
با توجه به اهمیت این مسأله می توان اهمیت وجود آئین نامه های مناسب طراحی در برابر زلزله و شناخت عوامل ناشناخته در مسیر ایمن کردن ساختمان ها، بررسی بیشتر سازه های طراحی شده بر مبنای این آئین نامه ها و شناخت ضعف ها و مشکلات احتمالی این طراحی ها را به راحتی ملاحظه نمود. بدین منظور یکی از روش های بررسی عملکرد ساختمان ها با توجه به روش ها و آئین نامه های طراحی موجود ترسیم منحنی های شکنندگی می باشد. رسم این منحنی ها از سازه های هسته ای آغاز شد چرا که این سازه ها جز سازه های بسیار مهم اند و آسیب دیدگی آنها در هنگام زمین لرزه می تواند فجایع زیست محیطی و بسیار خطرناک به وجود آورد. در سال 1980 اولین منحنی شکنندگی برای یک نیروگاه هسته ای در ژاپن ترسیم گردید. در ایران این منحنی در سال 1386 برای ساختمان های بتن مسلح با دیوار برشی رسم گردید. اساس این منحنی ها بر مبنای شدت
زلزله ها (PGA) و احتمال آسیب پذیری سازه بر اساس عملیات آماری بر روی پارامترهای تقاضای هندسی نظیر نسبت بیشینه تغییر مکان جانبی، می باشد. در محور افقی این نمودار رده های مختلف PGA و در محور قائم احتمال فراگذشت از حدود آئین نامه ای بر اساس سطوح عملکرد IO و LS و CP می باشد. احتمال فراگذشت به وسیله توزیع لوگ نرمال به دست می آید. در سطوح عملکرد
فوق الذکر محدوده های به عنوان محدوده شکست در آئین نامه Fema356 ذکر گردیده است که از آن به عنوان انحراف معیار جهت رسیدن به احتمال مورد نظر استفاده می گردد. تحلیل دینامیکی فزاینده مورد استفاده در این تحقیق یکی از روش های آنالیز دینامیکی غیرخطی می باشد. در این تحلیل سازه تحت اثر یک سری از تحلیل های تاتریخچه زمانی قرار گرفته و شتاب نگاشت های مد نظر در رده های شدت PGA مقیاس می گردد.
جهت ارزیابی منحنی های شکنندگی و اینکه مشخص گردد احتمالات به دست آمده برای آسیب پذیری قاب ها تا چه حد قابل اعتماد است، مقایسه ای بین طیف آئین نامه 2800 و طیف پاسخ حاصل از 14 شتاب نگاشت مورد استفاده انجام می گردد و به موجب نتایج مقایسه، PGA آئین نامه را به دست آورده و احتمال آسیب پذیری را بر مبنای آن مشاهده می نماییم.
بررسی احتمال آسیب پذیری و آنالیز قاب ها و شاید بتوان گفت سازه های ساختمانی می تواند به دست آوردن احتمال فراگذشت (آسیب پذیری) کمک بسیار مناسبی جهت پیش بینی خسارات زلزله احتمالی در ساختمان، با کاربری های مختلف و پیش بینی تمهیدات لازم برای ستادهای مدیریت بحران سازمان های بیمه گر و از همه مهمتر مقاوم سازی ساختمات هایی که نیاز مبرم به این مسأله دارند، باشد.
(در فایل دانلودی نام نویسنده موجود است)
تکه هایی از متن پایان نامه به عنوان نمونه :
(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
فصل اول.. 1
1 هدف از انجام تحقیق.. 2
2 مبانی نظری تحقیق: 5
2-1 راکتور VVER-1000 : 5
2-1-1 قلب راكتور: 7
2-2 کد PARCS : 12
2-2-1 معرفی کد PARCS : 12
2-2-2 روش ها و راه حل های مورد استفاده در کد PARCS : 15
2-2-2-1 روش های گسسته سازی فضایی : 15
2-2-2-2 گسسته سازی زمانی: 18
2-3 قالب PMAXS : 18
2-3-1 معرفی قالب PMAXS : 18
2-3-2 نحوه تهیه سطح مقطع برای قالب PMAXS : 19
2-3-3 روند تهیه شاخه ها: 25
2-4 کد WIMS : 30
2-4-1 معرفی کد WIMS : 30
2-4-2 کاربرد کد های سلولی: 30
2-4-3 روش های حل معادله ترابرد در WIMSD5: 34
2-5 معرفی كد CITATION : 37
2-6 روش های تولید کتابخانه برای کد PARCS : 38
2-7 جهش میله کنترل (Control rod ejection ) 40
3 پیشینه تحقیق : 43
4 روش انجام تحقیق: 46
4-1 آماده سازی قلب برای انجام محاسبات كد WIMS : 46
4-1-1 محاسبه درصد وزنی عناصر سوخت: 46
4-1-2 محاسبات مربوط به خنك كننده: 48
4-1-3 میله های كنترل: 50
4-1-4 محاسبه چگالی اتمی عناصر بكار رفته در میله های جاذب قابل سوخت: 50
4-1-5 محاسبه درصد وزنی عناصر غلاف: 51
4-1-6 محاسبه باكلینگ: 52
4-1-7 محاسبه ثابت های گروهی بازتابنده: 52
4-1 آماده سازی قلب برای انجام محاسبات كد CITATION : 55
4-2 تهیه کتابخانه سطح مقطع : 56
4-1-8 تهیه قالب PMAXS: 56
4-3 آماده سازی قلب برای محاسبات کد PARCS : 58
4-4 اجرای کد PARCS : 59
5 نتایج.. 64
5-1 محاسبات مربوط به صحت سنجی مدل: 64
5-2 :محاسبات مربوط به حالت Cold و HZP. 67
5-3 محاسبات PPF بعد از مصرف سوخت در طی یک دوره زمانی مشخص : 73
5-4 نتایج حاصل از شبیه سازی جهش میله كنترل: 81
6 نتیجه گیری و پیشنهادات… 87
6-1 نتیجه گیری: 87
6-2 پیشنهادات: 88
6 پیوست الف: 89
7 پیوست ب : 94
8 پیوست ج : 97
9 پیوست د. 100
10 فهرست منابع.. 101
جدول صفحه
جدول 2‑1:مشخصات قلب راکتور[1] 8
جدول 2‑2: مشخصات مجتمع سوخت[1] 9
جدول 2‑3: مشخصات سوخت[1] 10
جدول 2‑4: حساسیت وابستگی سطح مقطع به متغییر های حالت… 23
جدول 2‑5: تغییراتKinf و مشتقات جزئی آن برای هر یک از متغییر ها 23
جدول 2‑6: معرفی فرمت PMAXS. 28
جدول 4‑1:محاسبات سوخت برای کدWIMS. 48
جدول 4‑2: محاسبات میله های جاذب سوختی.. 51
جدول 4‑3: محدوده تغییرات متغییر ها در حالت Cold. 59
جدول 4‑4:تعداد شاخه ها در حالت Cold. 59
جدول 4‑5 : تعداد شاخه ها در حالت Cold برای بازتابنده 60
جدول 4‑6:محدوده تغییر متغییرها در حالت HZP. 60
جدول 4‑7: تعداد شاخه در حالت HZP برای سوخت… 60
جدول 4‑8: تعداد شاخه ها در حالتHZP برای بازتابنده 60
جدول 4‑9: محدوده تغییر متغییر ها در حالت کار عادی راکتور 61
جدول 4‑10: تعداد شاخه ها در حالت کار عادی برای سوخت… 61
جدول 4‑11: تعداد شاخه ها در حالت کار عادی برای سوخت… 61
جدول 4‑12: مشخصات حالت های مختلف جهش میله کنترل.. 62
جدول 5‑1: مقایسه ضریب تکثیر بی نهایت برای مجتمع های سوخت بین PARCS و WIMS در حالت HZP 65
جدول 5‑2: جایگذاری میله کنترل گروه 10 در ابتدای سیکل(HZP) 68
جدول 5‑3: جایگذاری میله کنترل گروه 9 در ابتدای سیکل(HZP) 68
جدول 5‑4:جایگذاری میله کنترل گروه 8 در ابتدای سیکل(HZP) 68
شکل صفحه
شکل 2‑1:چینش مجتمع های سوخت در سیکل اول کاری راکتور[1] 10
شکل 2‑2 چینش بانک های کنترلی در قلب VVER-1000[1] 11
شکل 2‑3:نحوه محاسبات مصرف سوخت و استفاده از PMAXS و کد WIMS[3] 29
شکل 2‑4: شمای کلی روند محاسبات در کد WIMS. 32
شکل 3‑1:ارزیابی قدرت قلب در طی حادثه خروج میله کنترل [8] 44
شکل 4‑1:نحوه معادل سازی یک مجتمع در کد WIMS. 53
شکل 4‑2 :نحوه شبکه بندی در کد CITATION.. 55
شکل 4‑3 الگوریتم برنامه فرترن نوشته شده 57
شکل 5‑1:مقایسه تغییرات Kinf بر حسب Burnup برای مجتمع با غنای 2.44% بدون میله کنترل بین PARCS و WIMS. 65
شکل 5‑2: مقایسه تغییرات Kinf بر حسب Burnup برای مجتمع با غنای 2.44% بدون میله کنترل بین PARCS و WIMS. 66
شکل 5‑3: مقایسه تغییرات Kinf بر حسب Burnup برای مجتمع با غنای 2.44% با میله کنترل بین PARCS و WIMS 66
شکل 5‑4 مقایسه تغییرات Kinf بر حسب Burnup برای مجتمع با غنای 2.44% بدون میله کنترل بین PARCS و WIMS. 67
شکل 5‑5:اختلاف PPF برای ابتدای سیکل کاری راکتور با درنظر گرفتن فیدبک ترموهیدرولیکی و بدون فیدبک ترموهیدرولیکی.. 69
شکل 5‑6نحوه توزیع شعاعی قدرت در حالت HZP با جایگذاری میله کنترل.. 72
شکل 5‑7 :PPF برای شرایط Teff=0.1 eff.day, H10 = 60%, N = 25%Nnom.. 74
شکل 5‑8: اختلاف PPF محاسبه شده توسط PARCS و آلبوم برای شرایط Teff=0.1 eff.day, H10 = 60%, N = 25%Nnom.. 74
شکل 5‑9: PPF برای شرایط Teff=0.1 eff.day, H10 = 60%, N = 25% Nnom.. 75
شکل 5‑10: اختلاف PPF محاسبه شده توسط PARCS و آلبوم برای شرایط Teff=0.1 eff.day, H10 = 60%, N = 25% Nnom.. 75
شکل 5‑11: PPF برای شرایط Teff=2.0 eff.day, H10 = 60%, N = 40%Nnom.. 76
شکل 5‑12: اختلاف PPF محاسبه شده توسط PARCS و آلبوم برای شرایط Teff=2.0 eff.day, H10 = 60%, N = 40%Nnom.. 76
شکل 5‑13: PPF برای شرایط Teff=10.0 eff.day, H10 = 80%, N = 50%Nnom.. 77
شکل 5‑14: اختلاف PPF محاسبه شده توسط PARCS و آلبوم برای شرایط Teff=10.0 eff.day, H10 = 80%, N = 50%Nnom.. 77
شکل 5‑15: PPF برای شرایط Teff=10.0 eff.day, H10 = 60%, N = 40%Nnom.. 78
شکل 5‑16: اختلاف PPF محاسبه شده توسط PARCS و آلبوم برای شرایط Teff=10.0 eff.day, H10 = 60%, N = 40%Nnom.. 78
شکل 5‑17: PPF برای شرایط Teff=20.0 eff.day, H10 = 80%, N = 50%Nnom.. 79
شکل 5‑18: اختلاف PPF محاسبه شده توسط PARCS و آلبوم برای شرایط Teff=20.0 eff.day, H10 = 80%, N = 50%Nnom.. 79
شکل 5‑19: PPF برای شرایط Teff=70.0 eff.day, H10 = 80%, N = 75%Nnom.. 80
شکل 5‑20: اختلاف PPF محاسبه شده توسط PARCS و آلبوم برای شرایط Teff=70.0 eff.day, H10 = 80%, N = 75%Nnom.. 80
شکل 5‑21:میزان کل راکتیویته موجود در قلب در 1% قدرت نامی.. 82
شکل 5‑22:میزان راکتیویته اعمال شده توسط میله کنترل در 1% قدرت نامی.. 82
شکل 5‑23: تغییرات ماکزیمم دمای سوخت در 1% قدرت نامی.. 83
شکل 5‑24:میزان کل راکتیویته موجود در قلب در 71% قدرت نامی.. 84
شکل 5‑25:میزان راکتیویته اعمال شده توسط میله کنترل در 71% قدرت نامی.. 84
شکل 5‑26: تغییرات ماکزییم دمای سوخت… 85
فهرست اختصارات
FA Fuel Assembly
PPF Power Peaking Factor
PMAXS Purdue Macroscopic cross section
DBA Design basic accident
BDBA Beyond Design basic accident
PARCS Purdue Advance Reactor Core Simulator
HZP Hot Zero Power
ANM Analytical Nodal Method
NEM Nodal Expansion Method
GenPMAXS Generation of the Purdue Macroscopic XS set
فصل اول
از آنجایی که پیامد های حوادث هسته ای بطور بالقوه احتمال دارد منجر به رخدادهای فاجعه باری برای کارکنان و ساکنان اطراف نیروگاه ها گردد لذا ، ایمنی مهمترین مسئله مربوط به نیروگاه های هسته ای می باشد تا مقبولیت عمومی استفاده از تکنولوژی هسته ای را در کنار صرفه های اقتصادی در فرهنگ مردم نهادینه سازد . در این راستا پژوهشگران سعی می کنند تأسیسات هسته ای را هر چه بیشتر به سوی ایمنی مطلق ببرند.
بخشی از ایمنی راكتور مربوط به ساختار نوترونیک و فیزیک هسته ای و پرتویی می باشد و جنبه دیگر از ایمنی راكتور مربوط به قسمت انتقال حرارت و ساختار ترموهیدرولیک نیروگاه های هسته ای می باشد .دیدن این دو جنبه در کنار هم می باشد که می تواند حاشیه خوبی از ایمنی نیروگاه های هسته ای را فراهم آورد. برای تحقق بخشیدن این مهم و پیش بینی رفتار راکتور های هسته ای از کد هایی که نیروگاه را بطور کلی یا جزئی شبیه سازی می کنند، استفاده می شود. کدها ی رایج در آنالیز حوادث هسته ای به دو دسته انتگرالی و دیفرانسیلی تقسیم می شود. کد های انتگرالی پاسخ کل نیروگاه هسته ای را شبیه سازی می کند که این همان پاسخ سیستم خنک کننده راکتور ، محفظه راکتور[1] و خیلی مهمتر منبع ورود مواد رادیواکتیو به محیط زیست را در بر می گیرد. کد های دیفرانسیلی که قادر هستند بینش عمیقی را نسبت به جزئیات حادثه فراهم آورند. در این پایان نامه تمرکز بر روی قسمت نوترونیک می باشد.
به نظر می رسد بكار گیری ثوابت گروهی بصورت خام و پردازش نشده در كد هایی استفاده می شود كه چندان قدرت مانور برای شبیه سازی سناریو های با تغییرات شدید را ندارند. از آنجا كه خود این كدها قابلیت دریافت یک كتابخانه با قابلیت دربگیری داده ها برای حالت های مختلف و دیگر ویژگی ها كه مورد بحث این پایان نامه می باشد ،را دارا نمی باشند ، لذا از قدرت لازم برای مدل كردن شرایط هایی نزدیک به واقعیت فی ذات ناتوانند. به نظر می رسد كه كد های هسته ای نسل جدید برای بالا بردن توانایی خود از یک فرمت مشخص داده های ورودی بهره خواهند برد كه كد PARCS از این جمله می باشد. PARCS علاوه بر دریافت داده های ورودی بصورت مستقیم قادر است داده ها را بصورت فرمت خاصی به نام PMAXS دریافت کند.
از آنجایی که کد PARCS از کد های جدید و معتبر در زمینه محاسبات قلب راکتور است ، تأکید زیادی بر استفاده از این کد در آنالیز حوادث گذرا می باشد. [3] همچنین با توجه به اینکه کد PARCS از روش های پیشرفته محاسباتی و کم هزینه از لحاظ زمانی استفاده می کند ، می توان روش های مورد استفاده از این کد را در آینده مورد مطالعه قرار داد و راه های توسعه کد و نقاط قوت و ضعف آن را بررسی کرد. تهیه فرمت PMAXS با بهره گرفتن از کد WIMSD5 ، آشنایی و بکارگیری کد PARCS در محاسبات قلب راکتور VVER-1000 مهمترین اهداف این پایان نامه می باشند. خصوصیت مهم این کد که محاسبات نوترونیک و ترموهیدرولیک را بصورت یکپارچه انجام می دهد نیز بر اهمیت این مطالعه افزوده است.
[1] Containment