وبلاگ

توضیح وبلاگ من

پایان نامه ارشد ادبیات فارسی: شایستگی های مدیریتی از منظر حضرت مولی الموحدین و تطبیق آن با مثنوی مولوی

:

 

در این فصل به معیارهای تبیین شده برای یک مدیر شایسته و شایستگی­های تعریف شده برای یک مدیر در تئوری­های مدیریتی غربی و تئوری­های مدیریت اسلامی می­پردازیم تا معیار و استانداردهایی برای این بحث جهت بررسی و ورود به بحث اصلی به دست بیاوریم.

 

1-2- شایستگی­های مدیریتی از منظر تئوریهای مدیریتی 

 

قدمت مباحث مربوط به رهبری در غرب را می­توان به دوران پیش از مسیح نسبت داد. همواره در طول تاریخ افرادی نظیر افلاطون ماکیاولی و هابز در غرب و یا کنفسیوس و زانگزی در شرق برای تبیین چگونگی به وجود آمدن یک رهبری خوب در تلاش بوده ­اند. برای مثال 500 سال قبل از مسیح کنفسیوس چهار عامل را برای رهبران اثربخش به این شرح بیان کرده است:

 

1- عشق

 

2- هدایت کامل

 

3- پرهیزگاری

 

دانلود مقاله و پایان نامه

 

 

4- میانه روی

 

برای شروع بحث ابتدا به تعاریفی که در تئوری­های مدیریت از «مدیر» ارائه شده است می­پردازیم: از نظر تاتنبام رهبری عبارت است از نفوذ میان­فردی که در وضعیتی خاص از طریق فرایند ارتباطات در جهت دستیابی به هدف یا اهدافی معین اعمال می­ شود. استونر، رهبری را فرایند هدایت و اعمال نفوذ بر فعالیتهای گروه یا اعضای سازمان تعریف می­ کند. به عقیدۀ وی این تعریف سه کاربرد مهم دارد نخست آن که رهبری در رابطه با زیردستان و پیروان مطرح می­ شود چون این افراد باید دستورات رهبر را بپذیرند. دوم آنکه رهبری مستلزم توزیع نابرابر قدرت میان رهبر و اعضای گروه است و تردیدی نیست که قدرت رهبر به مراتب از پیروان بیشتر است و سوم آنکه رهبری مستلزم توانایی برای اعمال نفوذ بر رفتار پیروان است.

 

در سال 1938 محققی به نام بارنارد در مطالعاتش به موضوع  وظایف یک رهبر اشاره کرده است. به گفتۀ وی مدیر واقعی باید از عهدۀ هر دو وظایف مدیریتی و عاطفی خود به خوبی بر آید، وی این وظایف را تحت عنوان وظایف شناختی و وظایف روانی نام­گذاری کرده است. وظایف شناختی شامل راهنمایی، هدایت و الزام به انتخاب و عمل (تصمیم­گیری) و وظایف روانی شامل جنبه­ های عاطفی و انگیزشی نظیر هدف­گذاری و توسعۀ اعتماد و تعهد با هدف حمایت از اهداف اخلاقی بزرگ. (علوی، هدایتی نیا، 1385: 12-13).

پایان نامه ارشد مهندسی نساجی: تکمیل منسوج با چند لایه مرکب نانو لوله های کربنی/ پلیمر رسانا


در این فصل به پیشینه و کاربرد کامپوزیت ها، کامپوزیت نانولوله ­های کربنی و پلیمر هادی و استفاده از آن­ها در سلول­های خورشیدی به عنوان الکترود مقابل، نقش، اهمیت و مشکلات الکترود مقابل پرداخته شده است.
1-1- تعریف کامپوزیت
ترکیب دو یا چند ماده با یکدیگر به طوری که به صورت شیمیائی مجزا و غیر محلول در یکدیگر باشند و بازده و خواص سازه­ای این ترکیب نسبت به هریک از اجزاء تشکیل دهنده آن به تنهایی­، در موقعیت برتری قرار بگیرد را کامپوزیت می­نامند. به عبارت دیگر کامپوزیت به دسته ای از مواد اطلاق می­ شود که آمیزه ای از مواد مختلف و متفاوت در فرم و ترکیب باشند و اجزاء تشکیل دهنده آن­ها هویت خود را حفظ کرده، در یکدیگر حل نشده، با هم ممزوج نمی­شوند [7].
2-1- تاریخچه
قدیمی ترین مثال از کامپوزیت ها مربوط به افزودن کاه به گل جهت تقویت گل و ساخت آجری مقاوم جهت استفاده در بناها بوده است. قدمت این کار به 4000 سال قبل از میلاد مسیح باز می­گردد. در این مورد کاه نقش تقویت کننده و گل نقش زمینه یا ماتریس را دارد. ارگ بم که شاهکار معماری ایرانیان بوده است. نمونه بارزی از استفاده از تکنولوژی کامپوزیت­ها در قرون گذشته بوده است. مثال دیگر تقویت بتن توسط میله­ های فولادی می­باشد. که قدمت آن به سال ۱۸۰۰ میلادی باز می­گردد. در بتن مسلح یا تقویت شده میله های فلزی استحکام کششی لازم را در بتن ایجاد می­نمایند چرا که بتن یک ماده ترد می­باشد و مقاومت اندکی در برابر بارهای کششی دارد. بدین ترتیب بتن وظیفه تحمل بارهای فشاری و میله های فولادی وظیفه تحمل بارهای کششی را بر عهده دارند [7].

دانلود مقاله و پایان نامه

 

3-1- تاریخچه مواد پلیمری تقویت شده با الیاف
تاریخچه مواد پلیمری تقویت شده با الیاف به سال­های 1940 در صنایع دفاعی و به خصوص کاربردهای هوا-فضا بر می­گردد. در این صنایع داشتن عملکرد بالا از مقرون به صرفه بودن اهمیت بیش­تری دارد. برای ساخت و طراحی مواد با عملکرد بالا از الیافی که نسبت استحکام به وزن بالایی داشتند استفاده گردید. برای مثال در سال 1945 بیش از 7 میلیون پوند الیاف شیشه به طور خاص برای صنایع نظامی­، مورد استفاده قرار گرفته است. علاوه بر هوافضا، از کامپوزیت منسوجات در زمینه ­های مختلفی از جمله ورزشی(تولید لباس­های ورزشی محافظ مثل کلاه و …)، پزشکی، تولید و ذخیره­سازی انرژی، الکترونیک، فناوری اطلاعات، خودرو سازی(در ساخت بدنه و سایر بخش­های اتومبیل مثل چرخ­ها) و ساختمان سازی(برای ساخت دیوارهایی با استحکام بالا و ضخامت کم و درنتیجه هزینه تولید پایین) مورد استفاده قرار می­گیرد[7].
4-1- کامپوزیت نانولوله ­های کربنی و پلیمر رسانا
تکنولوژی پلیمریزاسیون شیمیایی انیلین و پلی­پیرول در حدود یک قرن است که شناخته شده است. با کشف پلیمرهای رسانا در سال 1963، تحقیقات گسترده­ای در زمینه­­ی پلیمرهای رسانا توسط مک دیارمید (در سال 1976) با هدف کاربرد آن­ها در سنسورها، ذخیره­ی انرژی و خازن­ها و ابزارهای دیگر انجام شد[8].
پلیمرهای رسانای تهیه شده  به روش پلیمریزاسیون شیمیایی رسانایی بالا، ثبات خوب و انحلال­پذیری ناچیزی در محلول­های آبی دارند. سنتز شیمیایی پلیمرهای رسانا ساده­ترین روش تهیه پلیمرهاست که در این روش، مونومرها با بهره گرفتن از یک ماده­ی اکسیدکننده پلیمریزه می­شوند. به عنوان مثال انیلین به صورت شیمیایی توسط اکسیدکننده­ های متفاوتی از جمله آمونیوم پرسولفات، پتاسیم دی­کرومات، آهن( ) کلراید و به طور مشابه پلی­پیرول هم با بهره گرفتن از اکسیدکننده­ های متفاوتی از جمله نقره ( ) نیترات ، آهن( ) کلراید، آهن ( ) نیترات و مس( ) نیترات می ­تواند تهیه شود [8].
تیوفن و مشتقاتش هم می ­تواند به صورت شیمیایی در محیط­های آلی تهیه شوند. اگرچه به علت حلالیت خوب مونومرها در محلول­های آبی، سنتز شیمیایی پلی­انیلین و پلی­پیرول در مقایسه با مشتقات تیوفن، مقرون به صرفه­تر و سازگار با محیط­زیست است[8].
نانولوله­های کربنی به دلیل داشتن ساختار منحصربفرد، سطح مخصوص زیاد و پایداری گرمایی و الکتریکی بالا بسیار مورد توجه قرار گرفته­اند. هنگامی که نانولوله­های کربنی در داخل شبکه­ های پلیمری قرار می­گیرند می­توانند هدایت الکتریکی و خواص مکانیکی آن­ها را بهبود ببخشند. پلیمر رسانا نوعی از پلیمرها با پیوندهای π و نانولوله­های کربنی هم پیوندهای π مزدوج دارند. که می توان نانولوله های کربنی را به نوعی پلیمر که تنها از کربن ساخته شده در نظرگرفت. هر اتم کربن نانولوله­ی کربنی یک اوربیتال P اضافی دارد و الکترون ها در اوربیتال P اضافی ، پیوندهای π غیر مستقر زیادی را به وجود می آورند. این الکترون های π غیرمستقر[1] می توانند به الکترون های π پلیمررسانا به صورت پیوندهای غیرکووالانسی π – π متصل شوند. بنابراین پیوند پلیمررسانا با دیواره های جانبی نانولوله ی کربنی به شکل پیوندهای غیرکووالانسی π – π و کامپوزیت پلیمررسانا-نانولوله با ساختار هسته-پوسته می تواند فراهم شود[9].
در تحقیقات گذشته، پلیمریزاسیون شیمیایی پلیمر رسانا و مشتقات آن بر روی مواد مختلف  مثل شیشه، پلیمر، سیلیکا، اکسیدهای فلزی، الیاف و منسوجات انجام شده است. درنتیجه نشان داده شد که همه­ی مواد می­توانند با بهره گرفتن از پلیمرهای رسانا و کامپوزیت جدیدشان پوشش­دهی شده و در زمینه ­های مختلفی مورد استفاده قرار گیرند. تلاش­ های زیادی در جهت بهبود خواص الکتروشیمیایی و مکانیکی پلیمرهای رسانای سنتز شده انجام شد. برای این منظور پوشش­دهی مواد کربنی مختلف با پلیمرهای رسانا انجام شد. مواد کربنی مختلف ازجمله کربن سیاه، کربن فعال، الیاف کربن، نانولوله­های کربنی تک دیواره و چند دیواره، قبل از شروع پلیمریزاسیون به منظور تشکیل سوسپانسیون در داخل محلول دیسپرس شدند. سپس پلیمریزاسیون در سطح این مواد کربنی اتفاق افتاد[8].
از آنجایی که نانولوله­های کربنی قابلیت دیسپرس شدن کمی در آب دارند، برای تهیه دیسپرسیون بهتر نانولوله­ها در محلول­های آبی، قبل و در حین پلیمریزاسیون شیمیایی تحت امواج فراصوت(اولتراسونیک) قرار گرفتند. درنتیجه مطالعاتی در راستای تاثیر امواج فراصوت بر محصول پلیمریزاسیون انجام شد [10].
[1] delocalized π electrons

پایان نامه ارشد مهندسی نساجی: بررسی امکان استخراج الیاف بلند طبیعی سلولزی از برگ گیاه Typha australis

:
انسان از زمان های بسیار دور، علاوه براینكه با شكار حیوانات می­توانست مواد غذایی خود را تأمین كند، از پوست آنها نیز به عنوان وسیله مناسبی برای گرم نگه داشتن بدن خود استفاده می­كرد. در یک مقطع زمانی از تاریخ، انسان دریافت كه رویش مویین پوست حیوانات و رشته­های نازك و بلند برخی از گیاهان آمادگی دارند كه به وسیله تابیده شدن به دور خود، رشته های بلندتری را تشكیل دهند كه موسوم به نخ است. بدین ترتیب بود كه الیاف طبیعی نظیر پنبه، پشم، ابریشم و دیگر الیاف هر یک بنحوی شناخته شدند‌‌[1].
1-1- الیاف ماده اولیه نساجی
الیاف ماده اولیه صنعت نساجی است. خصوصیات اصلی یک لیف عبارت است از نسبت فوق العاده زیاد طول به قطر آن، استحكام، لطافت، الاستیسیته، جذب رنگ و قابلیت ریسندگی؛ كه باعث سهولت تاب دادن الیاف و در نتیجه باعث افزایش قدرت نخ می شود.[1] از مشخصه­های مهم یک لیف؛ طول (متوسط طول، توزیع طولی) ، سطح مقطع (مساحت كل، یكنواختی و شكل) ، تجعد (تعداد و دامنه تجعد) ، فنریت و مشخصات سطحی می­باشد. همچنین یک لیف باید دارای خصوصیات فیزیكی، شیمیایی و مكانیكی مطلوبی باشد. از خواص فیزیكی می توان به رنگ، جلا، وزن مخصوص، حرارت ویژه، هدایت الكتریكی وگرمایی، نقطه نرم شدن، دمای شیشه ­ای و از خواص مكانیكی به استحكام، ازدیاد طول، مدول، الاستیسیته و بازگشت پذیری اشاره كرد. همچنین خواصی از قبیل رطوبت بازیافتی، تورم، عكس­العمل در برابر حلال­ها، تغییر شیمیایی در اثر حرارت، مقاومت در برابر عوامل جوی(اكسیژن، نور، حرارت، میكروارگانیزمها)، مقاومت شیمیایی به اسید، قلیا، عوامل اكسید­كننده و رنگ پذیری نیز دارای اهمیت می­باشد[2].
با توجه به کاربرد متنوع کالاهای نساجی، از پوشاك تا مصارف صنعتی، لزوم استفاده از الیاف با خصوصیات مختلف و روش های متفاوت وجود دارد. روش های مختلفی برای طبقه ­بندی ویژگی­های مرتبط با خصوصیات الیاف، روش های تولید و استفاده نهایی از آنها وجود دارد. هر چند که، طول و ظرافت دو پارامتر مهم از خصوصیات الیاف می باشند که پتانسیل کاربردی و فرایند­پذیری الیاف را تعیین می­ کنند.
براساس طول الیاف و فرایند­پذیری در سیستم ریسندگی، الیاف به دو دسته الیاف استیپل کوتاه[1] و الیاف استیپل بلند[2] طبقه ­بندی می­شوند. معمولاً، در حدود 58% از الیاف تولیدی در جهان در سیستم الیاف استیپل كوتاه و در حدود 7% در سیستم استیپل بلند ریسندگی می­شوند. فرایند­پذیری الیاف در هر کدام از سیستم­های استیپل کوتاه و بلند، کاربرد ویژه­ای را تعیین می­ کنند. در حالت کلی، الیاف ظریف و کوتاه، برای کاربرد در پارچه  بیشتر ترجیح داده می­شوند، در حالیکه الیاف با طول بلندتر، معمولاً برای قالی، طناب و ریسمان استفاده می­شوند. طول الیاف سلولزی طبیعی، اصولاً براساس طول سلول واحد آنها و طول لیفی كه سلولهای واحد آن توسط مواد صمغی مانند لیگنین به همدیگر متصل شده ­اند، تعیین می­گردد[3] .
 اصولاً طبقه بندی الیاف در برگیرنده كلیه الیاف طبیعی[3] و مصنوعی[4] ،كار بسیار مشكل و شاید هم غیرعملی است. برای طبقه ­بندی الیاف بر حسب منشأ تولید، خانواده، ساختمان شیمیایی، خواص ومصرف آنها توسط متخصصین مختلف، پیشنهادات گوناگونی شده است. الیاف نساجی  به دو طبقه اصلی الیاف طبیعی و الیاف مصنوعی تقسیم می­شوند، كه هر یک از این دو طبقه، خود شامل گروه­های فرعی دیگری می­باشند. الیاف طبیعی مانند پشم و پنبه، الیافی هستند كه به طور طبیعی تولید می­شوند. الیاف مصنوعی، به الیافی اطلاق می­ شود كه به خودی خود وجود ندارند و با بهره گرفتن از مواد خام اولیه و یا سایر مواد شیمیایی و با به كار­بردن روش های صنعتی تهیه می­گردند[1]. منشأ الیاف سلولزی، گیاهان موجود درطبیعت هستند كه منابعی بی پایان بوده كه تنها بخش كوچكی از این منابع قابلیت استخراج الیاف با خصوصیات مناسب صنعت نساجی را دارند[2].
 بر اساس منشأ، الیاف طبیعی به سه گروه فرعی تقسیم می­شوند: الیاف معدنی، الیاف گیاهی و الیاف حیوانی.
الیاف معدنی: مصرف این نوع الیاف در صنعت نساجی محدود است و آسبست كه در اصطلاح عامیانه، پنبه كوهی[5] یا پنبه نسوز نامیده می­ شود، نمونه ­ای از این الیاف می­باشد.
الیاف گیاهی : الیاف گیاهی از چوب و برخی مواد كشاورزی، كه موادی قابل تجدید حیات هستند تولید می­شوند و دارای پتانسیل ایجاد محصولات جدید و جایگزینی مواد سوختنی هیدروكربنی مضر برای محیط زیست می­باشند[4]. الیاف گیاهی شامل مهمترین الیاف نساجی ،

پایان نامه

 یعنی پنبه و سایر الیاف مانند كتان، شاهدانه و جوت است . این الیاف از طریق كشت تهیه می­شوند و پایه سلولزی (ماده سازنده گیاهان) دارند[1]. الیاف گیاهی به گروه­های فرعی زیر تقسیم می­شوند:

1) الیاف دانه­ای، مانند پنبه
2)الیاف ساقه­ای، مانند كتان، جوت، شاهدانه
3)الیاف برگی، مانند سیسال، مانیلا
4)الیاف میوه­ای، مانند نارگیل
الیاف حیوانی : الیاف حیوانی مانند ابریشم،كه توسط كرم ابریشم تولید می­ شود، همچنین پشم و سایر الیاف شبیه مو، مانند كشمیر، آلپاكا و غیره را نیز در بر می­گیرد. این الیاف، پایه پروتئینی دارند كه تركیب پیچیده­ای است و قسمت عمده ساختمان بدن جانداران را تشكیل می­دهد. این الیاف به گروه­های فرعی زیر تقسیم می­شوند[1] .
1) پشم
2) ابریشم
3) مو، مانند موی بز، خرگوش، شتر، اسب
الیاف سلولزی طبیعی تک سلولزی، پنبه و کاپوک، نسبتاً دارای طولهای کوتاه و در فرایند سیستم استیپل کوتاه عمل شده، در حالیکه الیاف چند سلولی مانند کتان و چتایی، طولی بیش از 20 سانتیمتر دارند و مناسب فرایندهای سیستم استیپل بلند می­باشند. هر چند که کتان و دیگر الیاف بلند، از نظر صنعتی برای سیستم استیپل، طول بلندتری دارند، اما تلاشهای موفقیت آمیزی برای بدست آوردن الیاف کتان با طول کوتاه، مناسب مخلوط کردن با الیاف پنبه و پروسه­های سیستم الیاف استیپل کوتاه، صورت گرفته است. از طرفی برگهای نارگیل و ذرت، چند سلولی بوده و در نساجی مناسب پروسه­های الیاف طبیعی بلند می­باشند.[3] الیاف مصنوعی می­توانند بر حسب ماده تشكیل دهنده الیاف، به دو گروه فرعی متمایز از یكدیگر یعنی، الیاف بازیافته[6] و الیاف سنتتیك[7] تقسیم شوند:
الیاف بازیافته الیافی هستند كه ماده تشكیل دهنده آنها، قبلاً در طبیعت موجود بوده است و الیاف سنتتیک از مواد شیمیایی تهیه می­شوند كه دارای ساختمان لیفی نیستند و از طریق سنتز مواد اولیه و یا اجرای پروسس­های شیمیایی لازم، ساختمان لیفی به آنها داده می­ شود و طبیعت درساختن آنها و یا در قسمتی از فرایند تهیه آنها، نقشی ندارد و كلاً سنتتیک هستند. گروه های فرعی الیاف سنتتیک را به صورت زیر می­توان بیان كرد.[1]
– پلی­آمید، نظیر نایلون
– پلی­استرها، نظیر تریلین، داكرون
– مشتقات پلی­وینیل، نظیر پلی­وینیل الكل، كلراید
– پلی­اولفین ها، مانند پلی­پروپیلن، پلی­اتیلن
– پلی­اورتانها
الیاف طبیعی  نسبت به مواد سنتتیك، دارای مزیتهایی از قبیل معایب محیط زیستی و سمی كردن محیط زیست كمتر و قابلیت تجزیه شدن بیولوژیكی می­باشند. اما مشكل اساسی الیاف گیاهی نسبت به الیاف سنتتیك، فقدان یكنواختی مواد است. الیاف سنتتیک می­توانند در یک روش خاص تولید شوند و الیاف تولیدی، دارای كیفیت یكنواخت و ثابت می­باشد، در حالیكه الیاف گیاهی، زمانیكه تولید می­شوند، شرایط رشد، تأثیر به سزایی بر نتایج و خصوصیات آنها دارد. تفاوتهای ایجاد شده به دلیل متفاوت بودن مناطق كشت، نوع خاك، آب و هوا و كشاورز می­باشد. عملیات رتینگ[8](جداسازی الیاف از قسمتهای چوبی ساقه و صمغهای گیاهی)، بر رنگ لیف، جداسازی دسته الیاف، مواد متشكله و استحكام لیف اثر می­گذارد. كیفیت لیف به شرایط زراعی، رشد و مكان لیف در گیاه نیز بستگی دارد[4] . جدول 1 ، درصد تغییرات کمیتهای مختلف در نمونه الیاف به طول 1 سانتیمتر را نشان می­دهد که توسط آقای مردیت[9] آزمایش شده است. همانگونه که مشاهده می­ شود الیاف طبیعی گیاهی درصد تغییرات بالایی را نشان می­دهند. [5]
لیگنوسلولزها[1] به تمام گیاهانی اطلاق می شود كه امروزه بعنوان یكی از بزرگترین منابع طبیعی فراهم کننده مواد غذایی و انرژی مطرح هستند. 60 الی 80 درصد لیگنوسلولزها از پلی­ساكاریدها، كه پلیمر طبیعی قندها می­باشند، تشكیل شده است. علاوه بر این، طیف وسیعی از مواد قابل مصرف موجود در لیگنوسلولزها، تجدید پذیری آنها و همچنین سازگاری­شان با محیط زیست، هرگونه مطالعه و امكان سرمایه ­گذاری در مورد لیگنوسلولزها را بعنوان یكی از چشم­اندازهای آینده بشری توجیه­پذیر می­سازد.[5] بیشترین ماده تولیدی طبیعی در كره زمین، گیاهان می­باشند، كه میزان تولید آنها در حدود 1011 تن در سال برآورد شده است. گیاهان، شامل انواع درختان، گیاهان بوته­ای، محصولات و ضایعات كشاورزی و …  می­باشند، كه قسمت عمده آنها پس از تولید بی هیچ استفاده­ای به روش های مختلف، وارد چرخه بازگشت­پذیر طبیعت می­گردند. وجه مشخص همه گیاهان، ساختار فیبریلی آنها است كه در این ساختار، میكروفیبریل­های سلولز در شبكه ­ای از همی­سلولز[2] و لیگنین[3] احاطه شده و سایر مواد آلی و معدنی، این ساختمان را تكمیل كرده­اند. به خاطر همین ساختار، به این مواد، لیگنوسلولز گفته می­ شود [6].
ساختمان لیگنوسلولزها از سه بخش اصلی پلی ساكاریدها، لیگنین و مواد خارجی[4] تشكیل شده است. پلی­ساكاریدها به كربوهیدراتهای سنگینی گفته می­شوند كه شامل سلولز و همی­سلولز باشند و در مجموع 80-60 درصد كل ساختمان گیاه را تشكیل­ دهند[7] .
[1] Lignocelluloses
[2] Hemicelluloses
[3] Lignin
[4] Extraneous Material
[1] Short Staple Fiber
[2] Long Staple Fiber
[3] Natural Fibers
[4] Man-Made Fibers
[5] Asbestos
[6] Regenerated Fibers
[7] Synthetic Fibers
[8] Retting
[9] Meredith

پایان نامه ارشد رشته نساجی: تهیه و بررسی خواص نانو­کامپوزیت پلی­اتیلن کلرینه شده و پلی­ استر عمل شده با پلاسما و نانوکلی جاذب صوت


صدا وسیله ارتباط است، ارتباط انسان­ها با یکدیگر، ارتباط با طبیعت و حتی ارتباط با اشیاء ساخته شده توسط خود انسان. صدا اولین وسیله ارتباطی است، علم تولید، انتشار و دریافت صدا آکوستیک[1] نام دارد. امروزه همراه با رشد شهرنشینی، به علت توسعه بی­شمار در صنایع و همچنین افزایش استفاده از ماشین­آلات جدید، عظیم و نیرومند در تمامی زمینه­ها صداها­ی ناخواسته­ای به وجود می­آیند و آلودگی صوتی یکی از اجزای غیرقابل اجتناب زندگی ماشینی بشرگشته است. طبق آمار سازمان جهانی بهداشت تعداد افرادی كه در سراسر دنیا دچار كاهش شنوایی می­باشند از 120 میلیون نفر در سال 1995 به 250 میلیون نفر در سال 2004 افزایش یافته است. چنانكه در منابع علمی مختلف و تحقیقات بسیاری كه در خصوص بررسی و ارزیابی اثرات سوء صدا و ارزیابی علائم وعوارض آن بر شاغلین صنایع پر صدا به عمل آمده، حاكی از آن است عوارض بسیاری از قبیل تغییرات موقت و دائم آستانه شنوایی، ایجاد كم شنوایی حسی عصبی، مشكلات روحی و روانی، افزایش فشار خون، ایجاد معلولیت شنوایی، تأثیر منفی بر پارامترهای فیزیو لوژیک از قبیل درجه حرارت بدن، سردرد، اثرات منفی و بازدارنده بر كارایی و عملكرد كاركنان، افزایش ضربان قلب، اثر برسیستم گوارشی و دستگاه گردش خون، ایجاد استرس، ایجاد اختلال در زندگی روزمره و حالت اذیت و احساس ناراحتی، افزایش ترشح غدد درون ریز(غده فوق كلیوی و تیروئید)، اختلال در ایجاد یادگیری، تأثیر بر كیفیت خواب و بسیاری از عوارض دیگر را می­توان ناشی از تماس طولانی مدت با عامل زیان آور صدا نام برد. كلیه موارد یاد شده از عوارض مشترك صداهای با فركانس­های بالا، میانی و پا یین می باشند، بعضی از اثرات خاص مواجهه با صداهای فركانس پا یین است. برای غلبه بر این مشکل انواع مختلف مواد برای کاهش صدا توسعه یافته است اما تعداد محدودی از آنها توانسته ­اند تا حدی برای جامعه پرسرو صدا امروزی مفید واقع شوند [1،2].
به این منظور تولید پنل­ها­ی سوراخ شده، فلزات متخلخل و الیاف فلزی تاحد زیادی در سال­ها­ی اخیر بهبود یافته­اند که جذب صوت عالی در یک محدوده فرکانسی گسترده را فراهم می­ کند با این حال، خواص مکانیکی آنها با توجه به ضخامت و فاکتورهای میکرو متخلخل آنها کم گزارش شده است. اگرچه فلزات متخلخل یک سری ویژگی­ها­ی خوب مانند استحکام مخصوص بالا، هدایت حرارتی، جذب انرژی مؤثر دارند اما دارای معایبی هم هستند. آنها اغلب جاذب صدا­ها­ی ضعیف حتی در محدوده فرکانس­ها­ی پایین می­باشند، هزینه تولید بالا و مشکل درکنترل فرایند تولید دارند. تحقیقات اخیر روی توسعه کامپوزیت­ها­ی سبک وزن چند منظوره که دارای جذب خوب، نفوذ پذیری هوا و ویژگی مکانیکی خوب می­باشند متمرکز شده است [4،3].
2-1- اصول و مبانی صوت
1-2-1- ماهیت صوت
فیزیک و ماهیت صدا، شاخه­ا­ی از علم فیزیک است که با انعکاس و کیفیت صدا رسانی سر و کار دارد. یک جسم در حال ارتعاش، حالت ناپایدار موجی شکلی در محیط پیرامون خود که فراگیره نامیده می­ شود پدید می­آورد. این امواج هرچه از منبع ارتعاش دورتر می­گردند،

پایان نامه

 انرژی آنها توسط فراگیره جذب و به تدریج از بین می­روند. بنابراین پدیده­ا­ی احساسی که توسط ارتعاش، گوش انسان را تحریک می­ نماید، صدا یا صوت نامیده شده و فضایی که در آن این پدیده رخ می­دهد، میدان آکوستیکی نامیده می­ شود. فشار در همه جای یک محیط همگن(فراگیره) که در حالت تعادل است یکسان می­باشد. اگر در یکی از نقاط فراگیره فشار تغییر کند، حالت نامتعادل به­وجود می ­آید که این عدم تعادل به تمام نقاط محیط متعادل منتقل می­گردد. در این حالت اگر ذره­ا­ی از حالت تعادل خارج شده و شروع به ارتعاش نماید، با توجه به ساختمان مولکولی جسم فراگیره، ذره­ی مرتعش شده فشاری را در مولکول بعدی در پیرامون خود پدید می­آورد که می­توان گفت نقطه­ی مفروض با افزایش فشار مواجه شده و به عکس در ذره­ی متقارن آن کاهش فشار به­وجود می­آید. از انتشار فشار ذرات به یکدیگر موج پدید می­آید. اگر این جابجایی­ها بیش از 16 بار در ثانیه باشد، صدا ایجاد می­ شود و اگر همین افزایش و کاهش فشار در یک مسافت خاص به تصویر کشیده شود، آنچه به دست می ­آید امواج صوتی خواهد بود. هنگامی این امواج به وجود می­آیند که محیط متعادل دارای خاصیت الاستیسیته باشد و این قابلیت را داشته باشد که نیروی وارده را به ذرات مجاور انتقال دهد [6،5].

2-2-1- کمیت های صوتی
دامنه[1] : عبارت است از فاصله­ی بین دو نقطه بیشینه و کمینه­ی فشار در امواج صوتی. در بسیاری از منابع آکوستیکی، از صفر تا نقطه بیشینه مقدار مثبت و از صفر تا نقطه­ی کمینه مقدار منفی خوانده می­ شود.
فرکانس[2] (بسامد): عبارت­ است از تعداد نوسانات کامل امواج در یک ثانیه که از یک نقطه­ی معینی  عبور کنند. واحد تعداد نوسانات در ثانیه، هرتز(Hz) نامیده می­ شود.
سرعت صوت[3] : عبارت است از مقدار مسافت طی شده توسط امواج در مدت یک ثانیه. این مسئله بستگی به جنس و دمای محیطی دارد که امواج صوتی در آن حرکت می­ کنند. همچنین سرعت صدا با رطوبت نیز رابطه مستقیم دارد. هرقدر رطوبت هوا بیشتر باشد سرعت صدا نیز بیشتر است. جدول (1-1)  سرعت حرکت امواج صوتی را در مواد مختلف نشان می­دهد [8،7].
طول موج[1] : عبارت است از فاصله بین دو نقطه متوالی و همانند، مانند فاصله بین دو بیشینه و کمینه. طول موج به سرعت و نیز فرکانس صدا بستگی دارد.
توان[2] : عبارت است از مقدار انرژی خروجی از یک منبع در واحد زمان که با واحد وات (w) اندازه ­گیری می­ شود.
فشار[3] : عبارت است از میزان تغییر فشار اتمسفریک ایجاد شده توسط صدا در محیط فراگیره. فشار هوا مقداری بی­نهایت کوچک است که با واحد پاسکال(Pa) سنجیده می­ شود.
شدت[4] :  عبارت است از میزان انرژی صوتی که در واحد زمان بر واحد سطح عمود بر جهت انتشار موج می­رسد و با واحد ( ) اندازه ­گیری می­ شود.
امواج ساکن[5] : در تداخل امواج چنانچه دو موج با فرکانس­ها­ی یکسان مثلاً امواج منتشر شده و بازتاب با یکدیگر ترکیب شوند، ممکن است به علت اختلاف فاز یک صد و هشتاد درجه در بعضی نقاط یکدیگر را تضعیف کرده و نیز تساوی فازها یکدیگر را تقویت کنند. محل این نقاط ثابت است و الگوی به ­وجود آمده به امواج ساکن معروف است [9-7].
1 Wavelength
2 Power
3 Pressure
4 Intensity
5 Standing Wave
1 Amplitude
2 Frequency
3 Velocity
1 Acoustic

پایان نامه ارشد رشته نساجی: مقایسه خواص فشارپذیری و ظاهری فرش بافته شده از نخهای خاب پلی استر فیلامنتی با سطح مقطع دایره و مثلث


بی شك یكی از اصلی ترین الیاف مورد مصرف نساجی پلی استر می باشد. گواه این موضوع، میزان تولید و مصرف بالای سالیانه این لیف در جهان می باشد. ازطرفی، بیشترین حجم نخ خاب مورد مصرف فرش ماشینی در ایران، از الیاف اكریلیک تهیه می شود که لیفی نسبتا گران ودارای مشکلات زیست محیطی زیادی می باشد. در این تحقیق تلاش می شود تا خصوصیات نخ پلی استر فیلامنتی را با تغییردر شكل سطح مقطع ونیز تغییر نمره الیاف(dpf)[1] اصلاح نمود. نتیجه این تحقیق می تواند به جایگزین شدن الیاف پلی استر بجای اکریلیک در صنعت فرش ماشینی ایران کمک کند. از آنجا كه منسوجات فرش از طرف پای انسان(راه رفتن)، پایه صندلی و مبل و… همواره تحت بارگذاری دینامیكی واستاتیكی قرار دارد، در نتیجه فشارپذیری یکی از مهمترین خواص فیزیكی- مكانیكی آنها محسوب می شود. بنابراین یک فرش علاوه بر داشتن كاركرد و دوام فنی بالا، باید به عنوان یک كالای تزئینی و لوكس نیز دارای ظاهری زیبا باشد. از جمله عوامل مهم در این زیبایی نظم وترتیب نخ های خاب، درخشندگی و… می باشد. بنابراین دراین تحقیق ابتدا نمونه های تولید شده نخ های پلی استر فیلامنتی شاهد(نخ پلی استر متداول مصرفی صنعت) و اصلاحی در فرش ماشینی خاب بریده بافته شده و سپس نمونه های فرش از لحاظ آزمون های فشار پذیری (استاتیکی، دینامیکی) و بصری بایکدیگرمقایسه می شوند.
2-1- لیف پلی استر
1-2-1- تاریخچه
تا قبل از 1945دانشمندان مختلفی پلی استرهای لیفی زیادی را تهیه نموند ولی تقریبا تمامی آنها از واكنش گرمای آلیفاتیک تهیه می‌شدند و دارای نقطه ذوب پایینی برای مصارف نساجی بودند،  بعلاوه آنكه در حلالهای خشك شویی به آسانی حل می‌شدند.
دراولین روزهای جنگ جهانی دوم، و ینفیلد و دیكسون (Whinfild & Dicksonتوانستند با مطالعه مطالب كارتروز پلی اتیلتن ترفتالات با وزن مولكولی بالا را از واكنش اسیدترفتالیک و استر دی متیل خالص آن  با اتیلن گلایكول تهیه نمایند،  پلیمر جدید از طریق ذوب ریسی به الیاف تبدیل می‌شد و دارای خواص نساجی مطلوبی بود. ولی بدلیل جنگ جهانی انتظار جهت تولید تا سال 1945 بطول انجامید. در جولای 1945 شركت (ICI) طبق توافقنامه بلند مدت میان آنها و شركت دوپونت ،حق امتیاز تولید این لیف را به 5 كشور اعطا نمود. تولید پلی استر در دهه 60 و70 بطور گسترده ای افزایش یافت و در سال 1972 پلی استر از نایلون پیشی گرفت و عنوان مهمترین لیف مصنوعی را به خود اختصاص داد[3] .
2-2-1- ساختمان شیمیایی
پلی استر به پلیمرهایی اتلاق می‌گردد كه دارای گروه استر (co-o) در زنجیره  اصلی خود باشند. این گروه استری، ‌حاصل واكنش بین الكلهای دو ظرفیتی و كربوكیسلیک اسیدهای دو ظرفیتی می‌باشد[1].
در این تحقیق منظوراز لیف پلی استر، بیشتر پلی اتیلن ترفلات [1](PET) است که درواقع یکی از ‌مهمترین الیاف مصنوعی در صنعت نساجی می‌باشد.
فرمول شیمیایی این لیف در شکل (1-1)آمده است.

دانلود مقاله و پایان نامه

 

از جمله نامهای تجاری كه امروزه درسطح جهان برای الیاف پلی استر بكار می‌ برند می‌توان به ترویرا (Trevira) ، تولیدی شركت هوفست آلمان،  ترگال (Tergal) شركت رود یاستا فرانسه،  تریتا ل ((Trital شركت رود یانس ایتالیا، تترون (tetron) ژاپن و ویكلرون (Viklerun) شركت ببیانت میلزآمریكا اشاره كرد.  [2]
3-2-1- مصارف وكاربردهای الیاف پلی استر
پلی استر به مقدار زیاد با پنبه،  ویسكوز، پشم و سایر الیاف طبیعی مخلوط می‌شود و به این ترتیب كمبودهای الیاف طبیعی تا حدودی مرتفع می‌گردد. پلی استر را می توان از لحاظ كاربرد در 4 گروه الیاف كوتاه، الیاف بلند، نخهای یكسره و بی بافت هاتقسیم بندی نمود. نمره الیاف پلی استر كه در ریسندگی الیاف كوتاه تولید می‌شود،  در حدود 3-7/1 دسی تكس می‌باشد.  طول این الیاف 38 تا 76 میلیمتر و فرو موج آن 4 تا 6 در سانتیمتر است. كاربرد الیاف كوتاه پلی استر بسیار گسترده است. در صنایع بافندگی تاری پودی انواع مختلف پارچه‌های پیراهنی، ‌روپوشی، ‌شلواری، ‌رو مبلی، ‌پرده ای، ‌ملافه ای، مقدمات بافندگی و. .. ازاین لیف تهیه می‌شود.
پلی استر به منظور مخلوط شدن با پشم دارای نمره 3 تا 6 دسی تكس می‌باشد و طول برش آن 75 تا100 میلی متر می‌باشد. الیاف بلند پلی استر دارای طیف گسترده ای از كاربردها می‌باشد از جمله  در صنایع بافندگی فاستونی، ‌نیمه فاستونی و پشمی به صورت عموماً كت و شلوار مردانه، ‌منسوجات فنی، ‌پتو، ‌ملافه ، ‌نخ فرش ماشینی و. .. اشاره نمود.
نخ فیلامنتی پلی استر معمولی به صورت تك رشته ای وچند رشته ای مستقیماً در تریكو بافی،  بافندگی و تكسچرایزینگ  استفاده می‌شود، ‌نخ فیلامنتی پلی استر با استحكام بالا به مصارف صنعتی مثل نخ تایر خودرو، ‌كمر بند ایمنی،  تسمه، نخ خیاطی، ‌طناب،تورماهیگیری ،شیلنگ های صنعتی،چادر مسافرتی،بادبان كشتی و… مورد استفاده قرار میگیرد. بعلاوه در بافندگی حلقوی این لیف درقالب انواع زیر پوش، ‌تی شرت،  لباس ورزشی،  جوراب و. .. به بازار عرضه می‌شود. 
همانطور كه اشاره شد بخش قابل ملاحظه ای از مصرف پلی استر به صورت الیاف ریسیده می‌باشد كه در شاخه‌های مختلف نساجی كاربرد دارد.اما در سالهای اخیر پیشرفت قابل ملاحظه در منسوجات بی بافت صورت
گرفته است و موارد كاربرد زیادی را دارا می باشد از جمله منسوجات فنی،كشاورزی،ژئوتكستایلها،منسوجات محافظ،منسوجات بهداشتی و… .
به علت خواص ویژه پلی استر نظیر براقیّت و نرمی آن به صورت 100% نیز درمواردی چون روسری، ‌شال زنانه استفاده می‌گردد در صنایع كفپوش و نخ خاب وچلّه فرش ماشینی نیز كاربرد گسترده ای دارد[1].
4-2-1- خواص فیزیكی، مکانیکی وشیمیایی الیاف پلی استر (PET)
1-4-2-1- مقاومت در مقابل کشش اولیه
مقاومت در مقابل كشش اولیه در این گونه الیاف فوق العاده زیاد بوده و از خصوصیات خوب این الیاف است و نشان دهندة این است كه در مقابل فشار كم عملیات نخ پیچی، كششی به این الیاف داده نمی شود.آزمایشات نشان داده كه وزنه  9/0 گرم بر دنیر فقط یک درصد می تواند فیلامنت داكرون را كشش دهد، و وزنه 75/1 گرم بر دنیر باعث 2 درصد كشش در داكرون می شود. تریلین نیز مشابه داكرون می باشد و مقاومت در مقابل كشش اولیه خوبی دارد بنابراین نیروی كه در هنگام پوشیدن لباس وارد می شود ، تغییر شكل اساسی را در لباس بوجود نمی آورد[4] .
2-4-2-1- جذب رطوبت
در شرایط معمولی جذب رطوبت الیاف داكرون و تریلین 4/0 درصد است .در نتیجه استحكام كششی و ازدیاد طول تا حد پارگی در حالت خیس و خشك یكسان است .کفپوش پلی استر در حین مصرف ایجاد بار الكتریكی می كنند و در نتیجه خاك و آلودگیهای هوا را به سهولت جذب می كنند[4] .

 

  1. Polyethylene Terephthalate

 

  1. Denier per Filament
 
مداحی های محرم