در این فصل به پیشینه و کاربرد کامپوزیت ها، کامپوزیت نانولوله های کربنی و پلیمر هادی و استفاده از آنها در سلولهای خورشیدی به عنوان الکترود مقابل، نقش، اهمیت و مشکلات الکترود مقابل پرداخته شده است.
1-1- تعریف کامپوزیت
ترکیب دو یا چند ماده با یکدیگر به طوری که به صورت شیمیائی مجزا و غیر محلول در یکدیگر باشند و بازده و خواص سازهای این ترکیب نسبت به هریک از اجزاء تشکیل دهنده آن به تنهایی، در موقعیت برتری قرار بگیرد را کامپوزیت مینامند. به عبارت دیگر کامپوزیت به دسته ای از مواد اطلاق می شود که آمیزه ای از مواد مختلف و متفاوت در فرم و ترکیب باشند و اجزاء تشکیل دهنده آنها هویت خود را حفظ کرده، در یکدیگر حل نشده، با هم ممزوج نمیشوند [7].
2-1- تاریخچه
قدیمی ترین مثال از کامپوزیت ها مربوط به افزودن کاه به گل جهت تقویت گل و ساخت آجری مقاوم جهت استفاده در بناها بوده است. قدمت این کار به 4000 سال قبل از میلاد مسیح باز میگردد. در این مورد کاه نقش تقویت کننده و گل نقش زمینه یا ماتریس را دارد. ارگ بم که شاهکار معماری ایرانیان بوده است. نمونه بارزی از استفاده از تکنولوژی کامپوزیتها در قرون گذشته بوده است. مثال دیگر تقویت بتن توسط میله های فولادی میباشد. که قدمت آن به سال ۱۸۰۰ میلادی باز میگردد. در بتن مسلح یا تقویت شده میله های فلزی استحکام کششی لازم را در بتن ایجاد مینمایند چرا که بتن یک ماده ترد میباشد و مقاومت اندکی در برابر بارهای کششی دارد. بدین ترتیب بتن وظیفه تحمل بارهای فشاری و میله های فولادی وظیفه تحمل بارهای کششی را بر عهده دارند [7].
3-1- تاریخچه مواد پلیمری تقویت شده با الیاف
تاریخچه مواد پلیمری تقویت شده با الیاف به سالهای 1940 در صنایع دفاعی و به خصوص کاربردهای هوا-فضا بر میگردد. در این صنایع داشتن عملکرد بالا از مقرون به صرفه بودن اهمیت بیشتری دارد. برای ساخت و طراحی مواد با عملکرد بالا از الیافی که نسبت استحکام به وزن بالایی داشتند استفاده گردید. برای مثال در سال 1945 بیش از 7 میلیون پوند الیاف شیشه به طور خاص برای صنایع نظامی، مورد استفاده قرار گرفته است. علاوه بر هوافضا، از کامپوزیت منسوجات در زمینه های مختلفی از جمله ورزشی(تولید لباسهای ورزشی محافظ مثل کلاه و …)، پزشکی، تولید و ذخیرهسازی انرژی، الکترونیک، فناوری اطلاعات، خودرو سازی(در ساخت بدنه و سایر بخشهای اتومبیل مثل چرخها) و ساختمان سازی(برای ساخت دیوارهایی با استحکام بالا و ضخامت کم و درنتیجه هزینه تولید پایین) مورد استفاده قرار میگیرد[7].
4-1- کامپوزیت نانولوله های کربنی و پلیمر رسانا
تکنولوژی پلیمریزاسیون شیمیایی انیلین و پلیپیرول در حدود یک قرن است که شناخته شده است. با کشف پلیمرهای رسانا در سال 1963، تحقیقات گستردهای در زمینهی پلیمرهای رسانا توسط مک دیارمید (در سال 1976) با هدف کاربرد آنها در سنسورها، ذخیرهی انرژی و خازنها و ابزارهای دیگر انجام شد[8].
پلیمرهای رسانای تهیه شده به روش پلیمریزاسیون شیمیایی رسانایی بالا، ثبات خوب و انحلالپذیری ناچیزی در محلولهای آبی دارند. سنتز شیمیایی پلیمرهای رسانا سادهترین روش تهیه پلیمرهاست که در این روش، مونومرها با بهره گرفتن از یک مادهی اکسیدکننده پلیمریزه میشوند. به عنوان مثال انیلین به صورت شیمیایی توسط اکسیدکننده های متفاوتی از جمله آمونیوم پرسولفات، پتاسیم دیکرومات، آهن( ) کلراید و به طور مشابه پلیپیرول هم با بهره گرفتن از اکسیدکننده های متفاوتی از جمله نقره ( ) نیترات ، آهن( ) کلراید، آهن ( ) نیترات و مس( ) نیترات می تواند تهیه شود [8].
تیوفن و مشتقاتش هم می تواند به صورت شیمیایی در محیطهای آلی تهیه شوند. اگرچه به علت حلالیت خوب مونومرها در محلولهای آبی، سنتز شیمیایی پلیانیلین و پلیپیرول در مقایسه با مشتقات تیوفن، مقرون به صرفهتر و سازگار با محیطزیست است[8].
نانولولههای کربنی به دلیل داشتن ساختار منحصربفرد، سطح مخصوص زیاد و پایداری گرمایی و الکتریکی بالا بسیار مورد توجه قرار گرفتهاند. هنگامی که نانولولههای کربنی در داخل شبکه های پلیمری قرار میگیرند میتوانند هدایت الکتریکی و خواص مکانیکی آنها را بهبود ببخشند. پلیمر رسانا نوعی از پلیمرها با پیوندهای π و نانولولههای کربنی هم پیوندهای π مزدوج دارند. که می توان نانولوله های کربنی را به نوعی پلیمر که تنها از کربن ساخته شده در نظرگرفت. هر اتم کربن نانولولهی کربنی یک اوربیتال P اضافی دارد و الکترون ها در اوربیتال P اضافی ، پیوندهای π غیر مستقر زیادی را به وجود می آورند. این الکترون های π غیرمستقر[1] می توانند به الکترون های π پلیمررسانا به صورت پیوندهای غیرکووالانسی π – π متصل شوند. بنابراین پیوند پلیمررسانا با دیواره های جانبی نانولوله ی کربنی به شکل پیوندهای غیرکووالانسی π – π و کامپوزیت پلیمررسانا-نانولوله با ساختار هسته-پوسته می تواند فراهم شود[9].
در تحقیقات گذشته، پلیمریزاسیون شیمیایی پلیمر رسانا و مشتقات آن بر روی مواد مختلف مثل شیشه، پلیمر، سیلیکا، اکسیدهای فلزی، الیاف و منسوجات انجام شده است. درنتیجه نشان داده شد که همهی مواد میتوانند با بهره گرفتن از پلیمرهای رسانا و کامپوزیت جدیدشان پوششدهی شده و در زمینه های مختلفی مورد استفاده قرار گیرند. تلاش های زیادی در جهت بهبود خواص الکتروشیمیایی و مکانیکی پلیمرهای رسانای سنتز شده انجام شد. برای این منظور پوششدهی مواد کربنی مختلف با پلیمرهای رسانا انجام شد. مواد کربنی مختلف ازجمله کربن سیاه، کربن فعال، الیاف کربن، نانولولههای کربنی تک دیواره و چند دیواره، قبل از شروع پلیمریزاسیون به منظور تشکیل سوسپانسیون در داخل محلول دیسپرس شدند. سپس پلیمریزاسیون در سطح این مواد کربنی اتفاق افتاد[8].
از آنجایی که نانولولههای کربنی قابلیت دیسپرس شدن کمی در آب دارند، برای تهیه دیسپرسیون بهتر نانولولهها در محلولهای آبی، قبل و در حین پلیمریزاسیون شیمیایی تحت امواج فراصوت(اولتراسونیک) قرار گرفتند. درنتیجه مطالعاتی در راستای تاثیر امواج فراصوت بر محصول پلیمریزاسیون انجام شد [10].
[1] delocalized π electrons
فرم در حال بارگذاری ...