وبلاگ

توضیح وبلاگ من

پایان نامه ارشد مهندسی نساجی: تکمیل منسوج با چند لایه مرکب نانو لوله های کربنی/ پلیمر رسانا

 
تاریخ: 06-11-99
نویسنده: نویسنده محمدی


در این فصل به پیشینه و کاربرد کامپوزیت ها، کامپوزیت نانولوله ­های کربنی و پلیمر هادی و استفاده از آن­ها در سلول­های خورشیدی به عنوان الکترود مقابل، نقش، اهمیت و مشکلات الکترود مقابل پرداخته شده است.
1-1- تعریف کامپوزیت
ترکیب دو یا چند ماده با یکدیگر به طوری که به صورت شیمیائی مجزا و غیر محلول در یکدیگر باشند و بازده و خواص سازه­ای این ترکیب نسبت به هریک از اجزاء تشکیل دهنده آن به تنهایی­، در موقعیت برتری قرار بگیرد را کامپوزیت می­نامند. به عبارت دیگر کامپوزیت به دسته ای از مواد اطلاق می­ شود که آمیزه ای از مواد مختلف و متفاوت در فرم و ترکیب باشند و اجزاء تشکیل دهنده آن­ها هویت خود را حفظ کرده، در یکدیگر حل نشده، با هم ممزوج نمی­شوند [7].
2-1- تاریخچه
قدیمی ترین مثال از کامپوزیت ها مربوط به افزودن کاه به گل جهت تقویت گل و ساخت آجری مقاوم جهت استفاده در بناها بوده است. قدمت این کار به 4000 سال قبل از میلاد مسیح باز می­گردد. در این مورد کاه نقش تقویت کننده و گل نقش زمینه یا ماتریس را دارد. ارگ بم که شاهکار معماری ایرانیان بوده است. نمونه بارزی از استفاده از تکنولوژی کامپوزیت­ها در قرون گذشته بوده است. مثال دیگر تقویت بتن توسط میله­ های فولادی می­باشد. که قدمت آن به سال ۱۸۰۰ میلادی باز می­گردد. در بتن مسلح یا تقویت شده میله های فلزی استحکام کششی لازم را در بتن ایجاد می­نمایند چرا که بتن یک ماده ترد می­باشد و مقاومت اندکی در برابر بارهای کششی دارد. بدین ترتیب بتن وظیفه تحمل بارهای فشاری و میله های فولادی وظیفه تحمل بارهای کششی را بر عهده دارند [7].

دانلود مقاله و پایان نامه

 

3-1- تاریخچه مواد پلیمری تقویت شده با الیاف
تاریخچه مواد پلیمری تقویت شده با الیاف به سال­های 1940 در صنایع دفاعی و به خصوص کاربردهای هوا-فضا بر می­گردد. در این صنایع داشتن عملکرد بالا از مقرون به صرفه بودن اهمیت بیش­تری دارد. برای ساخت و طراحی مواد با عملکرد بالا از الیافی که نسبت استحکام به وزن بالایی داشتند استفاده گردید. برای مثال در سال 1945 بیش از 7 میلیون پوند الیاف شیشه به طور خاص برای صنایع نظامی­، مورد استفاده قرار گرفته است. علاوه بر هوافضا، از کامپوزیت منسوجات در زمینه ­های مختلفی از جمله ورزشی(تولید لباس­های ورزشی محافظ مثل کلاه و …)، پزشکی، تولید و ذخیره­سازی انرژی، الکترونیک، فناوری اطلاعات، خودرو سازی(در ساخت بدنه و سایر بخش­های اتومبیل مثل چرخ­ها) و ساختمان سازی(برای ساخت دیوارهایی با استحکام بالا و ضخامت کم و درنتیجه هزینه تولید پایین) مورد استفاده قرار می­گیرد[7].
4-1- کامپوزیت نانولوله ­های کربنی و پلیمر رسانا
تکنولوژی پلیمریزاسیون شیمیایی انیلین و پلی­پیرول در حدود یک قرن است که شناخته شده است. با کشف پلیمرهای رسانا در سال 1963، تحقیقات گسترده­ای در زمینه­­ی پلیمرهای رسانا توسط مک دیارمید (در سال 1976) با هدف کاربرد آن­ها در سنسورها، ذخیره­ی انرژی و خازن­ها و ابزارهای دیگر انجام شد[8].
پلیمرهای رسانای تهیه شده  به روش پلیمریزاسیون شیمیایی رسانایی بالا، ثبات خوب و انحلال­پذیری ناچیزی در محلول­های آبی دارند. سنتز شیمیایی پلیمرهای رسانا ساده­ترین روش تهیه پلیمرهاست که در این روش، مونومرها با بهره گرفتن از یک ماده­ی اکسیدکننده پلیمریزه می­شوند. به عنوان مثال انیلین به صورت شیمیایی توسط اکسیدکننده­ های متفاوتی از جمله آمونیوم پرسولفات، پتاسیم دی­کرومات، آهن( ) کلراید و به طور مشابه پلی­پیرول هم با بهره گرفتن از اکسیدکننده­ های متفاوتی از جمله نقره ( ) نیترات ، آهن( ) کلراید، آهن ( ) نیترات و مس( ) نیترات می ­تواند تهیه شود [8].
تیوفن و مشتقاتش هم می ­تواند به صورت شیمیایی در محیط­های آلی تهیه شوند. اگرچه به علت حلالیت خوب مونومرها در محلول­های آبی، سنتز شیمیایی پلی­انیلین و پلی­پیرول در مقایسه با مشتقات تیوفن، مقرون به صرفه­تر و سازگار با محیط­زیست است[8].
نانولوله­های کربنی به دلیل داشتن ساختار منحصربفرد، سطح مخصوص زیاد و پایداری گرمایی و الکتریکی بالا بسیار مورد توجه قرار گرفته­اند. هنگامی که نانولوله­های کربنی در داخل شبکه­ های پلیمری قرار می­گیرند می­توانند هدایت الکتریکی و خواص مکانیکی آن­ها را بهبود ببخشند. پلیمر رسانا نوعی از پلیمرها با پیوندهای π و نانولوله­های کربنی هم پیوندهای π مزدوج دارند. که می توان نانولوله های کربنی را به نوعی پلیمر که تنها از کربن ساخته شده در نظرگرفت. هر اتم کربن نانولوله­ی کربنی یک اوربیتال P اضافی دارد و الکترون ها در اوربیتال P اضافی ، پیوندهای π غیر مستقر زیادی را به وجود می آورند. این الکترون های π غیرمستقر[1] می توانند به الکترون های π پلیمررسانا به صورت پیوندهای غیرکووالانسی π – π متصل شوند. بنابراین پیوند پلیمررسانا با دیواره های جانبی نانولوله ی کربنی به شکل پیوندهای غیرکووالانسی π – π و کامپوزیت پلیمررسانا-نانولوله با ساختار هسته-پوسته می تواند فراهم شود[9].
در تحقیقات گذشته، پلیمریزاسیون شیمیایی پلیمر رسانا و مشتقات آن بر روی مواد مختلف  مثل شیشه، پلیمر، سیلیکا، اکسیدهای فلزی، الیاف و منسوجات انجام شده است. درنتیجه نشان داده شد که همه­ی مواد می­توانند با بهره گرفتن از پلیمرهای رسانا و کامپوزیت جدیدشان پوشش­دهی شده و در زمینه ­های مختلفی مورد استفاده قرار گیرند. تلاش­ های زیادی در جهت بهبود خواص الکتروشیمیایی و مکانیکی پلیمرهای رسانای سنتز شده انجام شد. برای این منظور پوشش­دهی مواد کربنی مختلف با پلیمرهای رسانا انجام شد. مواد کربنی مختلف ازجمله کربن سیاه، کربن فعال، الیاف کربن، نانولوله­های کربنی تک دیواره و چند دیواره، قبل از شروع پلیمریزاسیون به منظور تشکیل سوسپانسیون در داخل محلول دیسپرس شدند. سپس پلیمریزاسیون در سطح این مواد کربنی اتفاق افتاد[8].
از آنجایی که نانولوله­های کربنی قابلیت دیسپرس شدن کمی در آب دارند، برای تهیه دیسپرسیون بهتر نانولوله­ها در محلول­های آبی، قبل و در حین پلیمریزاسیون شیمیایی تحت امواج فراصوت(اولتراسونیک) قرار گرفتند. درنتیجه مطالعاتی در راستای تاثیر امواج فراصوت بر محصول پلیمریزاسیون انجام شد [10].
[1] delocalized π electrons


فرم در حال بارگذاری ...

« پایان نامه ارشد ادبیات فارسی: شایستگی های مدیریتی از منظر حضرت مولی الموحدین و تطبیق آن با مثنوی مولویپایان نامه ارشد مهندسی نساجی: بررسی امکان استخراج الیاف بلند طبیعی سلولزی از برگ گیاه Typha australis »