:
در پایان نامه حاضر به بررسی انتقال جرم و حرارت به روش انتگرالی در جریان جابجایی طبیعی سیال با پرانتل خیلی کم در مجاورت دیواره مایل موجی شکل و تحت میدان مغناطیسی پرداخته شده است. دیواره نفوذپذیر بوده و در نتیجه میتوان سیال را به درون دیواره مکش یا از درون آن دمش نمود. میدان مغناطیسی عمود بر دیواره و به سمت داخل و جریان الکتریکی عمود بر صفحه تشکیل شده توسط میدان مغناطیسی و سرعت سیال میباشد تا بتوان نیروی مغناطیسیای در جهت جریان یا خلاف آن ایجاد نمود.
جریان آرام و تراکمناپذیر بوده و شرط عدم لغزش بین سیال و دیواره برقرار است. برای حل معادلات حاکم ابتدا با اعمال یک تبدیل مختصات در پارامترهای x و y صفحه موجی شکل را مسطح کرده و آنگاه توسط روش انتگرالی معادلات PDE را به معادلات ODE تبدیل نموده و در نهایت دستگاه معادلات حاکم را به روش رانگ کوتا مرتبه چهارم و با بهره گرفتن از نرم افزار میپل حل مینماییم.
نتایج نهایی نشان می دهند با افزایش زاویهی سطح تنش برشی و عدد ناسلت هر دو افزایش مییابند. همچنین با افزایش پارامتر مغناطیسی تنش برشی و عدد ناسلت هر دو کاهش یافته و با افزایش دامنه و فرکانس سطح تنش برشی و عدد ناسلت هر دو کاهش مییابند. همچنین با افزایش عدد پرانتل تنش برشی و عدد ناسلت هر دو افزایش مییابند. بعلاوه با افزایش قدرت مکش تنش برشی و عدد ناسلت هر دو افزایش یافته و با افزایش قدرت دمش تنش برشی و عدد ناسلت هر دو کاهش مییابند.
پیشگفتار:
پدیدههای فیزیکی خیلی زیادی درگیر و وابسته با جابجایی طبیعی هستند. میتوان جریان جابجایی آزاد و انتقال حرارت مربوط به آن را در گستره وسیعی از سیستمهای طبیعی و صنعتی مشاهده کرد. جریان آزاد در هوا٬ مبدلهای حرارتی٬ جمعکننده های انرژی خورشیدی٬ تکنولوژی خشککنندهها٬ تکنولوژیهای فراوری غذا٬ خنک کننده های سیستمهای الکترونیکی و خنک کننده های راکتورهای هستهای مثالهایی از جریان جابجایی آزاد میباشند.
تفاوت اساسی جابجایی اجباری و آزاد در آن است که در جابجایی اجباری٬ موتوری که جریان را به حرکت در میآورد خارجی است اما در جابجایی آزاد این موتور درون خود جریان است. اختلاف دمای دیواره- سیال باعث ایجاد چرخه طبیعی و یکنواخت در جابجایی طبیعی می شود بدین صورت که در مجاورت دیواره گرم بستهای از سیال گرم شده و در حین منبسط شدن به سمت بالا حرکت می کند. سپس این بسته در مجاورت سیال سرد خنک شده متراکم گردیده و از طرف دیگر به سمت پایین حرکت می کند تا دوباره به سطح گرم برسد. این چرخه قابلیت انجام کار دارد یعنی اگر پروانهای را وارد جریان کنیم در اثر این جریان به چرخش در میآید. این مساله منشا نیروگاههای بادی است. ولی اگر وسیلهای برای استفاده از کار چرخه وجود نداشته باشد سیال به سرعت در چرخه به حرکت در آمده و کار بالقوه آن در اصطکاک با اجسام ثابت تلف می شود.
هیدرودینامیک مغناطیسی (MHD)1 شاخهای نسبتا جدید ولی مهم از مکانیک سیالات است. از جمله زمینه های مهم آن در صنعت میتوان به نقش کاربردی آن در خنک کردن راکتورهای هستهای با عدد پرانتل کوچک (مانند نقره با پرانتل 0.01 و بیسموت با پرانتل 0.021 ) نام برد ] 1و2[. مگنتو هیدرودینامیک مطالعه جریان سیالی است که هادی جریان الکتریکی بوده و همزمان یک میدان مغناطیسی نیز بر آن اعمال شده است به طوری که نیروی مغناطیسی به وجودآمده در جهت جریان یا خلاف آن است.
محیط متخلخل و پدیده انتقال حرارت و جرم در آن، موضوعی است که توجه بسیاری از محققین شاخههای مختلف علوم را به خود معطوف نموده است. روشهای تجربی، بررسیهای تئوری و شبیهسازیهای عددی بسیاری که در این زمینه در مهندسی مکانیک، مهندسی شیمی، مهندسی عمران، زمین شناسی و. . . صورت گرفته است مهر تصدیقی بر ادعای فوق میباشد.
به علت کاربرد وسیع و روزافزون محیط متخلخل در زمینههای مختلف مهندسی همواره نیاز به مطالعات اساسی دربارهی چگونگی انتقال جرم و حرارت در محیط متخلخل وجود داشته است، چرا که بررسیهای دقیق، ابزاری برای بهبود بخشیدن به سیستمهای مهندسی حاوی
مواد متخلخل و بالا بردن کیفیت و کارایی آنها میباشد. از موارد کاربرد فوق میتوان به عایقسازی حرارتی ساختمانها، عملیات حرارتی در زمین، راکتورهای کاتالیزوری شیمیایی، آلودگی آبهای زیرزمینی، صنعت سرامیک، تکنولوژی زیستشناختی، واحدهای ذخیره انرژی، مبدلهای حرارتی، خنکسازی، وسایل الکترونیکی، مخازن نفتی و نمونههای دیگر از این دست اشاره نمود. از طرفی در بسیاری از موارد، کوچکسازی سیستمهای انتقال حرارت از یکسو و افزایش شار حرارتی از سوی دیگر، نیاز به انتقال حرارت در زمان کوتاه و شدت بالا را ضروری میسازد. در مواردی که نیاز به انتقال شار حرارتی زیاد از محیط جامد به سیال است، روشهای موجود نظیر تغییر در دینامیک سیال، هندسه جریان، شرایط مرزی و. . . به تنهایی نمیتوانند از عهدهی تقاضای روز افزون کنترل انتقال حرارت در فرایندهای موجود برآیند. لذا نیاز فوری به مفاهیم جدید و بدیع جهت کنترل انتقال حرارت احساس میشود. تکنولوژی نانوسیال پتانسیل بالایی را برای کنترل سیستمهای مشمول انتقال حرارت در حجم کوچک ارائه میدهد. به این معنا که با اضافه نمودن مواد افزودنی به سیال پایه میتوان در جهت بهبود خواص ترموفیزیکی آن عمل نمود. در این میان میدانهای مغناطیسی خارجی در بسیاری از جریانهای طبیعی و صنایع تاثیرگذار هستند. به شاخهای از مطالعات که به اثر متقابل بین میدان مغناطیسی و سیال هادی در حال حرکت میپردازد، هیدرودینامیک مغناطیسی[1] MHD میگویند. بررسی این شاخه منوط به دانستن معادلات حاکم بر مغناطیس و سیالات و تاثیر هر کدام از پارامترهای این دو دانش بر یکدیگر میباشد. در مطالعه حاضر اثر پدیده MHD بر میدانهای سرعت، دما و غلظت و همچنین انتقال جرم و حرارت نیز منظور گردیده است.
:
وجود عیوب به شکل ترک ها و حفره ها در مواد کامپوزیت ناحیه هایی با تغییرات تنش زیاد ایجاد می کنند. این نواحی عمده ترین مکان برای پیدایش مد های مختلف شکست در سازه ها می باشند حتی اگر بارگذاری اعمال شده درحد متوسط باشد. بنابراین تحلیل تنش در مجاورت عیوب به عنوان اولین مرحله در فرایند طراحی ضروری است.
در مسایل الاستیسیته پاد صفحه ای استفاده از روش نابجایی پاد صفحه ای برای بدست آوردن راه حل هایی برای مسایل ترک در محیط های نامحدود یا نیمه نامحدود، یک کار معمول می باشد. این موضوع به این خاطر است که حل نابجایی همانند یک حل تابع گرین برای مسایل اصلی ترک می باشد.
تحلیل تنش در محیط های تضعیف شده توسط مجموعه ای از ترک ها و حفره ها از دیر باز مورد توجه محققین بوده است. از جمله تکنیک های موثر در تحلیل مذکور استفاده از روش توزیع نابجایی می باشد. تحقیقات انجام شده نشان داده است که از دیدگاه ریاضی ترک را می توان به صورت مجموعه ای از نابجایی ها در نظر گرفت و با بهره گرفتن از اصل جمع آثار حرکت نسبی لبه های ترک نسبت به یکدیگر و در
نتیجه ضریب شدت تنش را محاسبه نمود. در حقیقت توانایی حل نابجایی در حل مسائل مکانیک شکست خطی به قدرتمندی حل گرین در حل معادلات دیفرانسیل می باشد. در این پایان نامه در ابتدا میدان تنش و تغیر مکان در مناطق متفاوت در اثر نابجایی پاد صفحه ای ولترا محاسبه می گردد تا در نهایت برای تحلیل تنش محیط های حاوی ترک و حفره مورد استفاده قرار گیرد. مناطقی که مورد بررسی قرار می گیرند عبارتند از صفحه مستطیل شکل با شرایط مرزی دو لبه آزاد و دو لبه گیر دار، صفحه مستطیل شکل با هر چهار لبه آزاد، صفحه مستطیل شکل با یک لبه آزاد و سه لبه گیر دار و صفحه مستطیل شکل با سه لبه آزاد و یک لبه گیر دار.
بعد از بدست آوردن حل نابجایی در این محیط ها میدان تنش بدون در نظر گرفتن ترک و حفره فقط در اثر بارگذاری خارجی در این محیط ها بدست می آید. از حل های بدست آمده برای تحلیل تنش در محیط های شامل ترک و حفره استفاده می شود. در مورد حفره نشان داده می شود که حفره را می توان بصورت ترک بسته و بدون تکینگی در نظر گرفت و با اعمال شرایط مناسب تنش محیطی را روی آن بدست آورد.
مسائل مربوط به صفحه مستطیل شکل عبارتند از :
تحلیل یک ترک مستقیم احاطه شده، تحلیل دو ترک مستقیم احاطه شده و یک حفره بیضوی، تحلیل یک ترک مستقیم احاطه شده و یک ترک مستقیم لبه ای به همراه یک حفره بیضوی
هر یک از مثال های فوق یکبار برای صفحه مستطیل شکل با دو لبه آزاد و دو لبه گیر دار، صفحه مستطیل شکل با یک لبه آزاد و سه لبه گیر دار و نیز صفحه مستطیل شکل با سه لبه آزاد و یک لبه گیر دار که شرایط بار گذاری یکسانی دارند، حل شده اند و یکبار نیز برای صفحه مستطیل شکل با چهار لبه آزاد که شرایط بار گذاری آن با سه حالت مذکور متفاوت است، حل شده اند.
برای مقایسه جواب های بدست آمده با مراجع موجود، مسئله یک صفحه مستطیل شکل با هر چهار لبه آزاد که توسط دو ترک مستقیم و یک حفره بیضوی تضعیف شده است حل گردید. پس از میل دادن طول صفحه مستطیل شکل با هر چهار لبه آزاد به بی نهایت و اعمال شرایط بارگذاری یکسان، حل بدست آمده برای صفحه مستطیل شکل با هر چهار لبه آزاد با حل بدست آمده برای باریکه دقیقا مطابقت داشت.
شرایط بارگذاری برای صفحات مستطیل شکل که چهار لبه آن آزاد نیست بصورت نقطه ای روی لبه بالایی صفحه مستطیل شکل می باشد و برای صفحه مستطیل شکل با هر چهار لبه آزاد بصورت چهار بار نقطه ای که شرایط خود تعادلی صفحه مستطیل شکل را ارضا می کنند، می باشد.
ای بر نانوفناوری
فناوری نانو واژهای است کلی که به تمام فناوریهای پیشرفته در عرصه کار با مقیاس نانو اطلاق می شود. نانو، کلمهای یونانی است و به معنی کوتوله که در ریاضیات معادل ، یعنی یک میلیاردم است ودر فناوری نانو ابعادی در حدود 1 تا nm 100 را شامل می شود. علم و فناوری نانو، هنر وتوانایی به دست گرفتن کنترل ماده در ابعاد نانو و علم دستکاری و بازچینی اتمها برای ساخت مواد و ابزارها در مقیاس نانو متر است. در این فناوری ساخت ابزار و اشیا در اندازه های اتمی است و ملکول به ملکول توسط رباتهای برنامه ریزی شده در مقیاس نانومتریک انجام می شود. در این فناوری خواص جدیدی از مواد متاثر از غلبه خواص کوانتومی بر خواص کلاسیک به کار برده می شود. نانو فناوری در واقع رویکرد جدیدی در تمام عرصه هاست ویک علم فرا رشتهای است که تمام علوم را در بر میگیرد و میتوان گفت نقطه اتصال علوم در آینده میباشد. در بیان اهمیت این فناوری گفته می شود که بخشی از آینده نیست بلکه تمام آینده است.
استفاده از فناوری نانو ناخواسته به چند صد سال پیش بر میگردد. جام لیکورگوس که در موزه بریتانیا در لندن نگهداری می شود یک نمونه استفاده از این فناوری در گذشته است که به قرن چهارم بعد از میلاد برمیگردد. نکته جالب در این جام این است که تابش نور از بیرون به جام، آن را سبز رنگ کرده و با تابش نور از درون آن به رنگ قرمز در میآید. مطالعات میکروسکوپی پرده از راز این جام برداشته ومعلوم شده است که در درون شیشه این جام، ذرات نانو از جنس طلا و نقره قرار دارد و ذرات نانو، خواصی متفاوت از ذرات غیر نانو بروز
دهند.
پیشرفت فناوری نانو با اختراع میکروسکوپهای الکترونی وارد فاز جدیدی شد. در سال 1931 دانشمند آلمانی ماکسنات و ارنست روسک اولین نوع از این میکروسکوپها را اختراع کردند. واروین مولر پروفسور فیزیک دانشگاه ایالت پن با اختراع میکروسکوپ الکترونی با زمینه یونی، اولین فرد در تاریخ بود که اتمها را به صورت منحصر به فرد و ترتیب آنها در یک سطح مشاهده نمود.
با وجود تلاش های انجام شده، فاینمن فیزیکدان و دارنده جایزه نوبل فیزیک را به عنوان پایهگذار فناوری نانو میشناسند. وی در سال 1959 مقالهای درباره قابلیتهای این فناوری در آینده منتشر ساخت. وی در در مراسم میهمانی بعد از دریافت جایزه نوبل، در سخنرانی خود ایده فناوری نانو را برای عموم آشکار ساخت و معتقد بود که در اندازه های بسیار کوچک، فضایی بسیار بزرگ وجود دارد. وی معتقد بود که در آینده نزدیک موتورهایی به بزرگی سر سوزن ساخته خواهد شد.
بعد از این سال فعالیت در عرصه نانو رشد چشمگیری را شروع کرد. در سال 1980 در مرکز تحقیقاتی IBM در سوییس تکنیکی ابداع شد که تصویر اتم را بزرگ میکرد. در 1990 برای اولین بار دانشمندان اتمها را حرکت دادند و با اتمها اولین جمله را نوشتند. با فناوری نانو انسان اکنون می تواند جهان ماده را آنطور که خودش میخواهد بسازد. تنها کافی است مواد پایهای جهان ماده را یک بار دیگر اتم به اتم و ملکول به ملکول کنار هم بچیند.به قول هرست استومر برنده جایزه نوبل: “ظهور نانو تکنولوژی می تواند به بشر تسلط لازم برای کنترل بیسابقه و کمنظیر بر جهان ماده را بدهد.”
در این پایان نامه ما به ارائه سنتز بهینه ابعادی مکانیزم شش میلهای با قیدهای دورانی میپردازیم. هدف از سنتز، تولید مسیر به گونه ای است که تا حد امکان به مسیر مطلوب نزدیکتر باشد. از زنجیرههای شش میلهای، با هفت اتصال چرخشی، شناخته شده با یک درجه آزادی میتوان زنجیره وات و استفنسون را نام برد. دو نوع مکانیزم از زنجیره وات و سه نوع مکانیزم از زنجیره استفنسون حاصل می شود که معرفی و چند کاربرد آنها در فصل 2 پایان نامه آورده شده است.
به منظور سنتز بهینه تک هدفه مکانیزم، با در نظر گرفتن تابع خطای مسیر به عنوان تابع هدف، ترکیب الگوریتم ژنتیک و روش تجمعی ذره مورد استفاده قرار گرفته شده است و دقت نتایج خطای مسیر با آخرین نتایج در مقالات مقایسه می شود. الگوریتم چند هدفه NSGAII برای کمینه سازی همزمان دو تابع هدف مورد استفاده قرار میگیرد. دو تابع هدف با رفتار متضاد در نظر گرفته شده در این کار عبارتند از تابع خطای مسیر و انحراف زاویه انتقال از . در بهینهسازی دو هدفه با بکارگیری متد کاهش کنترل شده انحراف مجاز زاویه انتقال سرعت همگرائی تابع خطا را بالا برده و سعی در بدست آوردن جبهه پارتوئی مناسب می شود.
پیشگفتار
مکانیزم یک ابزار مکانیکی است که به منظور انتقال حرکت و یا نیرو از یک منبع به یک خروجی بکار میرود. یک اهرم بندی تشکیل شده
است از اهرمها (یا میلهها) که به طور عمومی صلب در نظر گرفته میشوند و توسط اتصالاتی از قبیل پین (لولا) یا لغزندههای منشوری بطوری که زنجیرههای (حلقههای) باز یا بسته را میسازند، به یکدیگر وصل میشوند. این چنین زنجیرههای سینماتیکی که حداقل یک اهرم آن ثابت و حداقل دو اهرم دیگر متحرک باقی بماند، مکانیزم نام دارد و اگر کلیه اهرم ها ثابت باشند، آنگاه سازه نامیده می شود. به عبارت دیگر مکانیزم اجازه میدهد اهرمهای “صلب” آن نسبت به یکدیگر حرکت داشته باشند. در حالی که برای سازه این چنین نیست.
زنجیرههای سینماتیکی بخش مهم از مکانیزم ها هستند که تحقیقات در زمینه آنها به دو بخش 1- آنالیز و 2- سنتز تقسیم می شود.
بطورکلی، سنتز مکانیزم ها به سه بخش متفاوت: 1- سنتز نوع 2-سنتز عددی 3-سنتز ابعادی تقسیم می گردد. دو سنتز اول مربوط به نوع مکانیزم و تعداد اعضای مورد نیاز برای حرکت مکانیکی بخصوص هستند. در حالی که هدف از سنتز ابعادی پیدا کردن همه پارامترهای ابعادی یک مکانیزم برای ایجاد حرکت دلخواه میباشد. هدف ما در این تحقیق سنتز ابعادی برای یک مسیر مورد نظر میباشد.
در بررسی ابعادی سه مسئله مهم مورد بررسی قرار میگیرد که عبارتند از:
برای سنتز یک مکانیزم گاهی از روشهای دقیق و گاهی از روش های تقریبی استفاده میگردد. سنتز دقیق به معنی حل معادلات حاکم بر مسئله به صورت دقیق میباشد و در سنتز تقریبی هدف حداقل کردن خطا برای این معادلات میباشد که سنتز بهینه اختصاص به این روش دارد.